Unit 3: Dynamics

Problems

20 N force moves a body with an acceleration of 2 ms⁻². What is it its mass? 3.1

(LHR 2013)

Given Data

Force acting on the body = F = 20 NAcceleration of the body = $a = 2 \text{ ms}^{-2}$

Required

Mass of the body = m = ?

Solution

From Newton's second law of motion

$$F = ma$$
So
$$m = \frac{F}{a}$$

By putting the values, we have

$$m = \frac{20}{2}$$
$$m = 10 \text{ kg}$$

Result

Mass of the body = m = 10 kg

3.2 The weight of a body is 147 N. What is its mass?

(LHR 2013, 2015)

Given Data

Weight of the body = w = 147 NGravitational acceleration = $g = 10 \text{ ms}^{-2}$

Required

Mass of the body = m = ?

Solution

As we know that

So
$$w = mg$$

$$m = \frac{w}{g}$$

By putting the values, we have

$$m = \frac{147}{10}$$
$$m = 14.7 \text{ kg}$$

Result

Mass of the body = m = 14.7 kg

3.3 How much force is needed to prevent a body of mass 10 kg from falling?

Given Data

Mass of the body = 10 kgGravitation acceleration = $g = 10 \text{ ms}^{-2}$

Required

Force required to prevent the body from falling = R = ?

Solution

As we know that in stable position,

$$R = w = mg$$

By putting the values, we have

$$R = w = 10 \times 10$$

$$R = 100 \text{ N}$$

Result

Force required to prevent the body from falling = R = 100 N

3.4 Find the acceleration produced by a force of 100 N in a mass of 50 kg. (GRW 2013)

Given Data

Force acting on the body = F = 20 N

Mass of the body = m = 50 kg

Required

Acceleration of the body = a = ?

Solution

From Newton's second law of motion

$$F = ma$$

So
$$a = \frac{F}{m}$$

By putting the values, we have

$$a = \frac{100}{50}$$

$$a = 2 \text{ ms}^{-2}$$

Result

Acceleration of the body = $a = 2 \text{ ms}^{-2}$

A body has weight 20 N. How much force is required to move it vertically upwards with 3.5 an acceleration of 2 ms⁻².

Given Data

Weight of the body = 20 N

Acceleration of the body = $a = 2 \text{ ms}^{-2}$

Gravitational acceleration = $g = 10 \text{ ms}^{-2}$

Normal reaction = R = w = 20 N

Required

Force acting on the body moving vertical upward = F = ?

Solution

As we know that

$$w = mg$$

So
$$m = \frac{w}{g}$$

By putting the values, we have

$$m = \frac{20}{10}$$
$$m = 2 \text{ kg}$$

From Newton's second law of motion

$$F = ma$$

By putting the values, we have

$$F = 2 \times 2$$
$$F = 4 \text{ N}$$

Now net force required to move the body upward = normal reaction + force producing acceleration = 20 N + 4 N = 24 N

Result

Force acting on the body moving vertical upward = F = 24 N

3.6 Two masses 52 kg and 48 kg are attached to the ends of a string that passes over a frictionless pulley. Find the tension in the string and acceleration in the bodies.

Mass of first body =
$$m_1 = 52 \text{ kg}$$

Mass of second body =
$$m_2 = 48 \text{ kg}$$

Gravitational acceleration =
$$g = 10 \text{ ms}^{-2}$$

Required

Acceleration of the bodies = a = ?

Tension in the string
$$= T = ?$$

Solution

When the two bodies are moving vertically then acceleration of the bodies is as,

$$a = \frac{(m_1 - m_2)g}{m_1 + m_2}$$

By putting the values in above equation, we have

$$a = \frac{(52-48)\times10}{52+48}$$

$$a = \frac{40}{100}$$

$$a = 0.4 \text{ ms}^{-2}$$

When the two bodies are moving vertically then tension in the string is as,

$$a = \frac{2m_1 m_2 g}{m_1 + m_2}$$

By putting the values in above equation, we have

T =
$$\frac{2 \times 52 \times 48 \times 10}{52 + 48}$$
$$T = \frac{49920}{100}$$
$$T = 499.2 \text{ N} = 500 \text{ N}$$

Result

Acceleration of the bodies = $a = 0.4 \text{ ms}^{-2}$ Tension in the string = T = 500 N

3.7 Two masses 26 kg and 24 kg are attached to the ends of a string which passes over a frictionless pulley. 26 kg is lying over a smooth horizontal table. 24 kg mass is moving vertically downward. Find the tension in the string and the acceleration in the bodies.

Given Data

Mass of the block moving vertically = $m_1 = 24 \text{ kg}$ Mass of the block moving along table = $m_2 = 26 \text{ kg}$ Gravitational acceleration = $g = 10 \text{ ms}^{-2}$

Required

Acceleration of the bodies = a = ?Tension in the string = T = ?

Solution

When one body is moving vertically and other body is moving horizontally then acceleration of the bodies is as.

$$a = \frac{m_1 g}{m_1 + m_2}$$

By putting the values in above equation, we have

$$a = \frac{24 \times 10}{24 + 26}$$

$$a = \frac{240}{50}$$

$$a = 4.8 \text{ ms}^{-2}$$

When the two bodies are moving vertically then tension in the string is as,

$$T=\frac{m_1m_2g}{m_1+m_2}$$

By putting the values in above equation, we have

T =
$$\frac{24 \times 26 \times 10}{24 + 26}$$

T = $\frac{6240}{50}$
T = 124.8 N = 125 N

Result

Acceleration in bodies = $a = 4.8 \text{ ms}^{-2}$ Tension in the string = T = 125 N

3.8 How much time is required to change 22 Ns momentum by a force of 20 N? (LHR 2014)

Given Data

Change in momentum = $P_f - P_i = 22 \text{ Ns}$ Force applied = F = 20 N

Required

Time required = t = ?

Solution

As we know that

$$F = \frac{P_f - P_i}{t}$$
 So
$$t = \frac{P_f - P_i}{F}$$

By putting the values, we have

$$t = \frac{22}{20}$$

$$t = 1.1 \text{ s}$$

Result

Time required = t = 1.1 s

3.9 How much is the force of friction between a wood block of mass 5 kg and the horizontal marble floor? The coefficient of friction between wood and marble is 0.6.

Given Data

Mass of the block = m = 5 kgCoefficient of friction = $\mu_s = 0.6$

Required

Force of friction = F_s = ?

Solution

As we know that

$$F_s = \mu_s mg$$

By putting the values, we have

$$F_s = 0.6 \times 5 \times 10$$

$$F_s = 30 \text{ N}$$

Result

Force of friction = $F_s = 30 \text{ N}$

How much centripetal force is needed to make a body of 0.5 kg to move in a circle of 3.10 radius 50 cm with a speed of 3 ms⁻¹? (LHR 2012)

Given Data

Mass of the body = m = 0.5 kg

Radius of the circle = r = 50 cm = 0.5 m

Speed of the body = $v = 3 \text{ ms}^{-1}$

Required

Centripetal force = F_c = ?

Solution

As we know that

$$F_c = \frac{mv^2}{r}$$

By putting the values, we have

$$F_c = \frac{0.5 \times (3)^2}{0.5}$$

$$F_c = 9 N$$

Result

Centripetal force = $F_c = 9 N$

Last Updated: October 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM]