

2200+ CHEMISTR

Chapter wise MCQs with Solution.

I Like Pressure, Diamonds are made under pressure, and I definitely enjoy it.

Main Features:

- Arrange Chapter wise
- Over 200 MCQs per Chapter.
- Explanation With MCOs
- Best for practice
- Best for Ouick Revision.
- Best for all Pakistan medical and engineering entry tests.
- From elementary to conceptual & tricky MCQs.
- MCOs are from all provinces books of Pakistan.

All Rights Reserved

NUMS, MDCAT, ETEA,

ECAT, GIK, AKU, NUST, AMC & NTS.

BY: S. Amin. Dr. A.Amin, Dr.A.Alam

Diamond Series is a Special Series of MCQs, which is Registered with IPO,FBR. So sharing of book on social media or printing of book is illegal, those who do so, strong actions will be taken against them.

Contents

Chap. 1 Stoichiometry			3
Chap. 2 Atomic Structure			14
Chap. 3 THEORIES OF COVALENT BONDING AND SHAPES OF	MOLECULES		24
Chap. 4 STATES OF MATTER.I. GASES	······································	***************************************	35
Chap. 5+6 STATE OF MATTERLIQUIDS + solids			48
Chap. 7 CHEMICAL EQUILIBRIUM			62
Chap. 8 acids, basis and salts			
Chap, 9 Chemical KINETICS	Control of the Contro	No. of the contract of the con	
Chap. 10 SOLUTION AND COLLOIDS			97
Chap, 11 THERMOCHEMISTRY			108
Chap. 12 ELECTROCHEMISTRTY			117
Chap. 13 S AND P BLOCK ELEMENTS	<u> </u>		126
Chap. 14 D AND F -BLOCK ELEMENTS	The second secon	ACCUMULATE PROTESTATION AND	
Chap. 15 ORGANIC COMPOUNDS			
Chap. 16 HYDROCARBONS			
Chap. 17 ALKYL HALIDES			
Chap. 18 ALCOHOLS, PHENOLS AND ETHERS			198
Chap. 19 ALDEHYDES AND KETONES			
Chap. 20 CARBOXYLIC ACIDS AND THEIR DERIVATIVES			
Chap. 21 BIOCHEMISTRY			
Chap. 22 INDUSTRIAL CHEMISTRY	The second secon		
Chap. 23 ENVIRONMENTAL CHEMISTRY			247

DIAMOND SERIES

1)	Which of the following is a compound?	Α	Brass -> Alloy (Made of Cu + Zn), O2 -
.50	(a) NH ₃ (b) Air (c) Brass (d) O ₂		-> Molecule
2]	Na + is Iso-electronic with:	D	Na+ = 10 e, Ne = 10e> Both are 1so-
1	(a) Mg (b) He		electronic
	(c) Fe (d) Ne		
3)	Which of the following pairs have same electronic structure?	A	Ar &Cl = are Iso-electronic between both have 18 e.
	(a) Ar & Cl = (b) Ca & Ar (c) Mg & Na + (d) Ag & Sn		
4)	Natural chlorine occurs as a mixture of	Α	Amount of $Cl^{35} = \frac{75}{100} = 0.75$,
0.0	isotopes if a mixture contains 75% Cl35	The second	Amount of C1 100 0.75,
1	and 25% Cl ^V what will be its correct	1	Amount of $Cl^{37*} = \frac{25}{100} = 0.25$
20	atomic weight?	4	Average atomic weight = (Amount) (At:
dy	(a) 35.50 (b) 34.50		Mass of 1" isotope) + (Amount) (At mass of
. 4	(c) 72.00 (d) 70.00		2 nd isotope)
			= (0.75)(35) + (0.25)(37) = 26.25 + 9.25 =
		_	35.5
5)	How many hydrogen atoms are present in	С	To find # ofAtom= $n \times N_A \times #$ of Atom in
	one mole of water? (a) 6.02×10 ²³ atoms (b) 1.806×10 ⁷⁴		formula $= 1 \times 6.02 \times 10^{23} \times 2$
			$= 12.04 \times 10^{23} = 1.2 \times 10^{24}$ atoms
	atoms (c) 1.204×10 ²⁴ atoms (d) 3.01×10 ²³	1	= 12,04× 10 = 1.2 × 10 alons
	atoms along (a) 3.01×10		
6)	The number of oxygen in 0.5 mole of	C	#of Atoms = n × NA × # of Atoms in
	$Al_2(CO_3)_3$ is (a) 4.5×10^{23}		formula $0.5 \times 6.02 \times 10^{27} \times 9 = 27.09 \times 10^{23}$
	(b) 3.6 x 10 ²⁴		$=> 2.7 \times 10^{24}$ atoms
	(e) 2.7×10^{24} (d) 9.0×10^{23}	1 6	
7)	A sample containing aluminum weighing	B	Formua of Aluminum Sulphide= Al 2S3
	10.0g yielded 2.0g of aluminum sulphide.		%age of an Element =
	What is the percentage of aluminum		Cinen Mace of Al v At. Mare
	(atomic mass = 27.0) in the sample?		Given Mass of organic Compounde
	Sulphur (atomic mass = 32.0)		# of atoms × M .Mass of Al × 100 =
	(a) $\frac{2.9 \times 100}{10.0}$ (b)	3	MMass of organic Compounde × 100 =
	10.0	-11	$\frac{2.0}{10.0} \times \frac{2 \times 27}{150} \times 100$
-	$\frac{2.0}{10} \times \frac{2 \times 27}{150} \times 100$		10.0 150 = = = = =
	10 1.0		
	(c) $\frac{2.0}{10.0} \times \frac{27}{1500} \times 100$ (d)		
	TOTAL TOTAL		
	$\frac{2.0}{10.0} \times \frac{150}{3 \times 27} \times 100$		
8)	Calculate the volume occupied by 2.8g of	В	ν
-,	nitrogen gas at STP.		$n = \frac{V}{V_{co}} \Rightarrow v = n \times V_{co}$
	(a) 22.4 dm3 (b) 2.24 dm3		****
	(c) 4.48 dm3 (d) 44.8 dm3		$n = \frac{m}{M} = \frac{2.8}{28} = 0.1$

			$V = 0.1 \times 22.4 = 2.24 \text{ Dm}^3$
9)	How many atoms are contained in one mole of $Ca(OH)_2$ (a) $5\times6.02\times10^{23}$ atoms (b) $30\times6.02\times10^{23}$ atoms (c) $3\times6.02\times10^{23}$ atoms (d) $6\times6.02\times10^{23}$ atoms	A	# of Atoms = $n \times N_A \times$ # of Atoms in formula = $1 \times 6.022 \times 10^{23} \times 5$ = $(5 \times 6.02 \times 10^{23})$ Atoms
10)	A gas at STP contains only 6.023x10 ²³ atoms and is monatomic it will occupy. (a) 1.2L (b) 22.4L (c) 30.5L (d) 44.8L	В	22.4dm³ = 22.4L = 6.023x10 ²³ atoms
11)	How many grams of waster are produced in burning 2.24dm³ of hydrogen at STP? (a) 180g (b) 81.g (c) 1.8g (d) 0.18g	C	2H2 + 02 \Rightarrow 2H20 2 mole 1 Mole 2 Mole n = $\frac{V}{Vm} = \frac{2.24}{22.4} = 0.1 Moles$ n = $\frac{m}{M}$, $m = n \times M = 0.1 \times 18 = 1.89$
12)	One mole is the amount of substance which contains as many elementary entities as contained in: (a) 0, 12 kg of $_{6}C^{12}$ (b) 1, 2 kg of $_{6}C^{12}$ atom (c) 0.012 kg of $_{6}C^{12}$ atom (d) 0.12 kg of $_{8}C^{16}$	C	One mole of C-12 = 12 g = (0.012 Kg)
13)	Which one of the following contains the greatest number of atoms: (a) 4g of Hydrogen (b) 4g of magnesium (c) 71g of chlorine (d) 127g of iodine	1	For H2 = n = $\frac{m}{M}$ = $\frac{4}{1.008}$ = 4 Mole For = Mg = n = $\frac{m}{M}$ = $\frac{4}{24}$ = 0.16
14)	A sample of carbon-12 has a mass of 3.0 g, which expression gives the number of atoms in the sample? (N _A is the symbol lon the Avogadro constant. (a) 0.0030N _A (b) 0.25 N _A (c) 3.0 N _A (d) 4.0 N _A	B	$N = n \times N_A = n = \frac{m}{M} = \frac{3}{12} = 0.25$ $N = 0.25 \times N_A$
15)	Four moles of electrons (4 x 6.02 x 10 ²³ electrons) would electroplate how many grams of silver from a silver nitrate solution? (a) 216 (b) 324 (c) 432 (d) 540)	AgNO ₃ > Ag ³ + NO ³ (Ag = 108) $n = \frac{m}{M}$, $m = n \times M$ $m = 4 \times 108 = 432$
16)	How many molecules are present in 0.20 g of Hydrogen gas? (a) $\frac{0.20}{1.008}$ x 6.02x 10^{23} (b) 0.20x 2.016	С	For number of particles = N = n × N _A $n = \frac{m}{M} = \frac{0.2}{2.016}$ $N = \frac{0.2}{2.016} \times 6.02 \times 10^{23}$
	(c) $\frac{0.20}{2.016}$ x 6.02x 10^{23} (d) $\frac{1.008}{0.70}$ x 6.02 x		

	1023		
17)	I amu is equal to 1.661×10^{-24} g, then 1.0 g will be equal to: (a) 6.022×10^{-23} amu (b) 6.022×10^{-23} amu (c) 6.022×10^{-24} amu (d) 6.022×10^{-24} amu	A	
18)	Calculate the number of moles of NaCl in 75.0g of table salt (a) 0.643 (b) 0.779 (c) 28.0 (d) 1.28	D	$n = \frac{m}{M} = \frac{75}{58} = 1.29$
19)	What is the number of hydrogen atoms in 5 moles of water? A) 3.0115 × 10 ²⁴ B) 6.023 × 10 ²³ C) 6.023 × 10 ²³ D) 5.0 x 10 ²³	В	# of Atoms = $n \times N_A \times$ # of Atoms in formula (Atomicity) = $5 \times 6.022 \times 10^{23} \times 2 = 6.023 \times 10^{24}$
20)	N ₂ + 3H ₂ ⇒ 2NH ₃ . In the above reaction the limiting reagent is: A) N ₂ B) H ₂ C) Ammonia D) None of the above	D	TOTAL
21)	Theoretical yield is always: A) Less then practical yield. B) Greater than actual yield C) Both are equal D) None of the above	В	
22)	Which of the following is iso -electronic pair? A) Ne and Na B) Ne and Mg* ² C) Al and c D) Ar and Ca	В	
23)	Balance the given equation by using the suitable coefficients from the following sets: FcS ₂ + O ₂ → Fc ₂ O ₃ + SO ₂ (a) 4:11:2:8 (b) 1:10:2:8 (c) 6:5:3:7 (d) 2:11:4:8	AV	
24)	Which one is experimental equation? a. Rate equation b. Rate expression c. Both a and b d. Stolchiometric equiation	D	Reate equation or rate expression is experimental while stoichiometric equation is theoretical.
25)	Which statement is correct about stoichiometric calculations? a. Reactants are completely converted into products b. No side reactions take place c. Both a and b are correct d. None of these	9	25g of fodine 25g atom of oxygen = 25 x 16 = 400g 25g mole of water = 450g 25g mole of nitrogen = 700 g So, nitrogen has maximum mass
26)	Which pair of characteristics is shown by the mass spectra of propanone and propanal? MASS of Molecular ion Fragmentation a. Different Different b. Different same	c	In mass spectra fragmentation occurs which formed the molecular ion. Mass of molecular ion will be same because they are functional group isomers but their fragmentation will be different because of different functional groups.

	c. Same different d. Same Same		
27)	Which one represents a mole? a. 6.02 x 10 ²⁰ atms b. 24 litres of oxygen gas at RTP c. 1g atm of Na d. All of these	D	One mole contains 6.62 x 10 ²³ atoms/ions/molecules etc. 22.4 dm ³ at STP = 24 dm ³ at RTP.
28)	Which one of the following has maximumass? a. 2g molecules of oxygen b. 1g mole of H ₂ O c. 2g atoms of nitrogen d. 1g formula of CaCO ₃	ım D	2g atom of O ₂ = 2 mole = 64 gram/mol 1 mole of H ₂ O = 18 gram/mol 2g atom of N ₂ = 2 mole = 56 gram/mol 1g formula of CaCO ₃ = 1 mole = 100 gram/mol
29)	Which one of the following contain maximum number of molecules? a. I mole of CH ₄ b. 17g of NH ₃ c. 56g of CO d. 180g of glucose	ins C	As I mole of a compound has N_A particles (molecules). Here were have two moles of CO which has maximum number of molecules = $2 \times N_A$
30)	Which one represents a mole? a. Ig of mo lecule of O ₂ b. Ig atomic mas of N ₂ c. Ig formula of NaCl d. All of them	D	G atom = gram molecule = g formula = mole
31)	The number of atoms present in 1 mole of 1 SO4: a. 7 x N _A b. 8 x N _A c. N _A d. 10 x N _A		No of aloms = mole x atomicity x $N_A = 7 N_A$
32)	A unit which represent 6.023 x 10 ²³ particles called; a. Mole b. I-gram ionic mass c. I gram molecule of nitrogen d. All of these	les D	Definition of Avogrado's number
33)	How many moles of carbon atoms are prese in 180g of glucose (C ₆ H ₁₂ O ₆)? a. 6 moles b. 12 moles c. N _A moles d. 24 moles	ent A/	180 g of glucose = 1 mole No of mole of C in C ₆ H ₁₂ O ₆ = n x C atom in glucose = 1 mole x 6 = 6 mole
34)	How many moles are there in 60g of NaOH a. /1.5 mol b. 2 mol c. 4 mol d. 8 mol		Moles in 60g of NaOH = 60g / 40 = 1.5
35)	If 15g of sulphur are burnt, what bolume SO ₂ is produced at STP? a. 10.51 dm ³ b. 20 dm ³ c. 30 dm ³ d. 100 dm ¹	of A	S(1mol) + O ₂ (1mol) → SO ₂ (1mol) Mole of sulphur = \frac{15g}{32} = 0.468 mole 1 mole of sulpher when burnt = 1 mole of SO ₂ produced X mole of sulpher when burnt = 0.462 mole of SO ₂ produced X = 0.468 Now convert into volume

			Volume of $SO_2 = 0.468 \times 22.4 \text{ dm}^3 = 10.51 \text{ dm}^3$
36)	The largest number of molecules are present in: a. 44g CO ₂ b. 98g H ₂ SO ₄ c. 36g H ₂ O d. 180g C ₆ H ₁₂ O ₆	С	44g of CO ₂ = N _A molecules 98g H ₂ SO ₄ = N _A molecules No. of molecules in 36g of H ₂ O = 2 x N _A molecules Number of molecules in 180g of C ₆ H ₁₂ O ₆ = N _A molecules
37)	Which of the following has maximum mass? a. 25g of iodine b. 25g atom of oxygen c. 25g mole of water d. 25g mole of nitrogen as	С	These are conditions for the stoichiometric calculations
38)	The Avogadro's number of atom or molecules of formula units of substance is called its: a. Molecular weight b. Molecular mass c. Mole d. None of these		One mole of any substance contains 6.022 x 10 ²³ particles
39)	The relative atomic mass of oxygen is 16amu. What is the mass of 2 mole of oxygen gas? a. 64g b. 32g c. 100g d. 71g	A	The relative atomic mass of oxygen = 16 amu Convert into mole thus 1 mole oxygen atom = 16g/mol So, mass of 1 mole of oxygen gas = 32 g Mass of two mole of oxygen gas = 2 x 32 g = 64g
40)	From 2 moles of KClO ₃ how many liters of O ₂ can be produced at STP by decomposition of all the KClO ₃ ? a. 11.2 l. b. 22.4 l. c. 33.6 l. d. 67.2 L	D	As $2KClO_3 \rightarrow 2KCl + 3O_2$ 2 mole $KClO_1$ produce 3 mole O_2 Volume of O_2 at $STP = moles x molar volume = 3 \times 22.4 \text{ dm}^3 = 67.2 \text{ L}$
41)	On heating 0.2 mole of CaSO ₄ , xH ₂ O loses 0.1 mole of water. What could be the formula of the compound? a. CaSO ₄ , 2H ₂ O b. CaSO ₄ , H ₂ O c. CaSO ₄ , H ₂ O d. None of these		0.2 moles CaSO ₄ on heating = 0.1 mole H ₂ O produced 1 mole CaSO ₄ on heating = $x(H_2O)$ produced $X = \frac{0.1}{0.2} \times \frac{1}{0.2} = 0.5$ or 1/2 Thus CaSO ₄ ½ H ₂ O
42)	Which one has the maximum mass? a. 98g of H ₂ SO ₄ b. 5g atom of iodine c. 3g molecule of SO ₂ d. 2g formula of CaCO ₃	В	98 g of H ₂ SO ₄ 5 g atom of iodine = 634.5 g 3g molecule of SO ₂ = 192 g 2g formula of CaCO ₃ = 200 g So 5 g of iodine has maximum mass
43)	The number of atoms present in 32 annu of oxygen gas: a. 2 b. 6.023 x 10 ²³ c. 4 d. 8	A	1 oxygen atom = 16 amu X (oxygen atom) = 32 amu $X = \frac{12}{16} = 2$ oxygen atom
44)	At 4°C the density of water is 1g/cm³, what is the mass of 2dm³ of water? a. 1000g b. 2000g c. 18g	В	1 g/cm ³ = 1000 g/dm ³ V = 2 dm3 D = $\frac{m}{v}$ => m = d x v => m = 1000 g/dm ³ x 2 dm ³ = 2000g

	d. 100g	
45)	What volume of 0.10 mol dm ³ aqueous silver D nitrate reacts with 20cm ³ of 0.20 mol dm ³	As $2AgNO_1 + BaCl_2 \rightarrow 2AgCl + Ba(NO_1)_2$ $\frac{m_1 v_1}{n_2} = \frac{m_2 v_2}{n_2} = \frac{0.2 \times 20}{2} = V_1 - 80 \text{ cm}^3$
	barium chloride?	n, n, 2 1
	a. 10 cm	
	b. 40 cm	
	c. 20 cm	
	d. 80 cm'	
46)	Which one is the molar volume of the gas at B STP?	It has been found experimentally that one mole of any gas at STP occupies 22.4 dm' volume
	a. 24 dm	of any gas at a re-tecupies 22.4 um voiume
	b. 22.4 dm'	
	c. 80 dm	
	d. 40 dm	
47)	Which of the following conditions of D	STP means 0°C and 1 atm pressure
	temperature and pressure are the standard	273 K and 14.7 PSI, 32 *F and 760 torr, 0°C =
	conditions (STP)?	273 K = 32°F
	a. O'C and 1 atm pressure	1 atm = 14.7 PS1 = 760 torr
1	b. 273 K and 14.7 psi	
1	c. 32°F and 760 Torr	
	d. All of them	
48)	Which one of the following compound B	% of clements
1	contains the highest percentage by mass of	no of atoms x atomic mass of elements x 100
	nitrogen?	morecular mass of the compound
	a. NH ₃	Percentage by mass of nitrogen in $N_2H_4 = \frac{20}{32}$ x
	b. N ₂ H ₄	100 = 87.5%
	c. NO	Which is the highest one
	d. NH,OH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
49)	The molecular mass of haemoglobin is 67200 A	Let x is the number of Iron atoms using the
	gt mul. If 0.33% of iron is present in	percent by mass formula we can find x
	haemoglobin, how many iron atoms are	$0.33 = \frac{55.85 \text{ x.x}}{67200} \times 100 => x = 4 \text{ number of iron}$
	present in one molecule of haemoglobin?	V atoms
	b. 3	
	c. 1	
	d. 8	
50)	DDT is an insecticide, it contains 47.39% A	% age of mass = mass of carbon x no of atoms x 100
	earbon by mass, its molecular mass is 354.5 g	
	mol , how many carbon atoms are present in	No of atoms = $\frac{47.39 \times 354.5}{32 \times 100} \times 100 = 14$
	one molecule of DDT?	12 x 100
	a. 14	
	b. 16	
	R 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
j	D a. 484 BAR R D F	
51)	In the reaction, $N_2 + 3H_2 = 2NH_1$ The limiting D	In a balanced and reversible reaction there is no
1800	reagent is:	concept of limiting and excess reagent.
	a. N ₂	,
	b. H ₂	
	c. NH,	
	d. None of these	
52)	For which one of the following the limiting A	The concept of limiting and excess reagent is
321	reagent is applicable?	applicable for irreversible reaction.
	a. Irreversible reaction	
	Irreversible reaction Reversible reaction	

53)	d. Endothermic 4 moles of sulphur reacts with 20 moles of I	$S + 3F_2 \rightarrow SF_6$
33)	fluorine to form sulphur hexa fluoride, the	I mole of S react with = 3 mole of F_2 , (From
	excess reagent is:	balanced reaction)
	a. Sulphur	4 moles of S react with = 20 moles of F ₂
	b. Fluorine	
		$\frac{\text{mole of S}}{\text{stoichiometric Ratio}}: \frac{\text{mole of F}}{\text{Stoichiometric ratio}} = > \frac{4}{1}: \frac{20}{3}$
	c. Both a and b	4: 6.66 SO, fluorine is excess reagent.
	d. None of these	
54)	If 49g of H ₂ SO ₄ react with 80g of NaOH; C	
	how much reactant will be left over after the	product formation.
	reaction is complete?	From balance equation
	a. 24.5 g H ₂ SO ₄	2NaOH + H ₂ SO → Na ₂ SO ₄ + 2H ₂ O
	b. 20g NaOH	80g NaOH react with = 98 g of H ₂ SO ₄ (from
	c. 40g NaOH	balance equation)
	d. 60g NaOH	Now for 49g of H2SO4 40g NaOH is needed out
		of 80g
		40g of NaOH react with = 49g of H ₂ SO ₄
		So the NaOH consumed is $80g - 40g = 40g$
1	A	As NaOH is an axcess reagent
1		Mass of excess reagent left = total mass of
-		excess reagent - mass consumed 80 - 40 = 40g
55)	The efficiency of a reaction can be checked	
22)	by knowing:	yield.
	a. % yield	Tich.
	h. Theoretical yield c. Expected yield	
ec.	d. All of them	Design the solution of the solutions
56)	The % yield of a certain reaction is 95, the reaction is considered as:	A Reaction that yield above 90% are considered
		excellent.
	a. Excellent	
	h. Good	
	c. Very good	7 1 1 1
	d. All of them	
57)	The actual yield is always less than the I	D Actual yield is less than theoretical yield due to
	theoretical yield due to	i. Side reaction,
	a. Side reaction	ii. Mechanical loss
	b. Mechanical loss	iii. Reversible nature, and
	c. Reversible nature	iv. Impurity
	d. All of them	50000 W 4550 W 1000 W 1
58)	Theoretical yield is always less than the I	D Theoretical yield is always greater than netual
	actual yield because:	yield
	a. Some product is lost in the	
100	experiment // Call	
l j	b. Reversible reaction may occur	SERIES
	c. Errors are made in wighing reactant	
	or the products	
FA1	d. The given statement is not correct	A second
59)	200 dm' of CO is burnt completely according	A According to the balanced chemical equation 2
59)	200 dm³ of CO is burnt completely according to the reaction.	volumes of CO combine with one volume of O2
59)	200 dm³ of CO is burnt completely according to the reaction. 2CO + O→ 2CO.	volumes of CO combine with one volume of O ₂ to produce two volumes of CO ₂ if 200dm of
59)	200 dm' of CO is burnt completely according to the reaction. 2CO + O₂ → 2CO₂ What volume of O₂ will be required?	volumes of CO combine with one volume of O2
59)	200 dm' of CO is burnt completely according to the reaction. 2CO + O₂ → 2CO₂ What volume of O₂ will be required? a. 100 dm'	volumes of CO combine with one volume of O ₂ to produce two volumes of CO ₂ if 200dm of
59)	200 dm² of CO is burnt completely according to the reaction. 2CO + O₂ → 2CO₂ What volume of O₂ will be required? a. 100 dm² b. 50 dm³	volumes of CO combine with one volume of O ₂ to produce two volumes of CO ₂ if 200dm of
59)	200 dm' of CO is burnt completely according to the reaction. 2CO + O₂ → 2CO₂ What volume of O₂ will be required? a. 100 dm'	volumes of CO combine with one volume of O ₂ to produce two volumes of CO ₂ if 200dm ¹ of

60)	The pressure of vapours when sent to the ionization chamber in mass spectrometer is (a) 10° to 10° torr (b) 10° ti 19° torr	(b)	Low pressure is maintained in te ionization chamber so that collisions of these ions may not occur.
	(c) 107 to 108 torr (d) 103 to 104 torr		
61)	9.8 grams of aqueous solution of H;SO ₄ contains moles of H' ions	(b)	9.8 g H ₂ SO ₄ = 0.1 mole H ₂ SO ₄ 1 mole H ₂ SO ₄ produces 2 moles H ² ions. Therefore 0.1 mole H ₂ SO ₄ produces 0.2 mole H ²
62)	One mole of C ₂ H ₂ OH contains no of oxygen atoms (a) 6.02 x 10 ²⁴ (b) 3.61 x 10 ²⁴ (b) 1.81 x 10 ²⁴ (d) 6.02 x 10 ²⁴	(a)	1 mole C ₂ H ₂ OH contains O = 1 mole Therefore 1 mole oxygen atoms =6.02 x 10 ²³ O- atoms
63)	A breaker contains 9 grams of water. The number of H atoms is (a) 6.02 x 10 ²³ (b) 3.01 x 10 ²³ (c) 6.02 x 10 ²⁴ (d) 3.01 x 10 ²³	(a)	9 grams = 0.5 mole H ₂ O 1 mole H ₂ O contains H-atoms = $2 \times 6.02 \times 10^{21}$ 0.5 mole H ₂ O contains H-atoms = 6.02×10^{21}
64)	Molecular formula is determined form empirical formulas because (a) Molecular formula x empirical formula = n (b) Molecular formula = n x empirical formula (c) Molecular formula x n = empirical formula (d) Molecular mass x empirical formula = n	(b)	Molecular formula is integral multiple of empirical formula Where n = Molecular mass Empirical Formula mass
65)	A molecule is the smallest particle of a substance because (a) it has positive charge on it (b) it exist independently (c) it decomposes into ions (d) it is always mono atomic	(b)	Definition of molecule: A smallest particle of a substance which exists independently
66)	Which of the following salts will have greater positive charge in its molar aqueous solution? (a) Ca(Cl) ₂ (b) KCl (c) NH ₄ Cl (d) NaCl	(a)	Ca" ion is a dipositive ion while Na', K' and N'N4 are unipositive ions. Therefore of positive charges in 1 mole of CaCl2 solution is two times.
67)	Which one of the following statement is incorrect (a) actual yield is always less than the theoretical yield (b) the formula of compound is not definite (c) law of conservation of mass is applied in stoichiometry	(b)	Formula of a compound is definite since formula is determined from constant composition of elements in the compound,

	(d) law of definite proportions is applied in stoichiometry		
68)	Which one of the following steps is not involved in determination of empirical formula?	(c)	Empirical formula is determined from the % composition of the compound. The % of each element is divided by its average atomic mass
	(a) Determination % of each element (b) Determination of gram atoms of each element (c) Determination of isotopes of each element		and not its isotopic mass.
	(d) Determination of atomic ratio of elements	-	
69)	2.38 grams of uranium contains U-atoms	(b)	At mass of U = 238
	(a) 6.02 x 10 ²² (b) 6.02 x 10 ²¹		238 g U has no. of U-atoms=6.02 x 10 ²³
	(c) 3.01 x 10 ²² (d) 3.01 x 10 ²¹		2.38 g U has No. of U-atoms
1	A		$= \frac{1}{100} \times 6.02 \times 10^{21} = 6.02 \times 10^{21}$
70)	What is the volume in cm of 3.01 x 10 ²³ molecules of O ₂ gas at S. T. P.	(c)	6.02 x 10 ⁵³ molecules of O ₂ at STP = 22.414dm ³ = 22414 cm ³
	(a) 1000 cm ³ (b) 11000cm ³		3.01 x 10 ²³ O ₂ molecules has vol.
	(c)1120 cm ³ (d) 11200cm ³		$= \frac{22414}{2} = 11207 \text{cm}^3$
71)	The total number of covalent bonds in 4.5 grams of water is	(d)	18g H ₂ O = 1 mole H ₂ O = 6.02 x 10 ²³ H ₂ O molecules
	(a) 6.02 x 10 ²³ (b) 6.02 x 10 ²²	1	$4.5gH_2O = \frac{4.5}{10} \times 6.02 \times 10^{21} H_2O$ molecules
	(c)3.01 x 10^{22} (d) 3.01 x 10^{23}	18	$= 1.505 \times 10^{23}$
		1	1 H ₂ O = 2 covalent bonds
			1.505 x 10 ²¹ H ₂ Ohas covalent bonds
	1	1 8	$= 2 \times 1.505 \times 10^{23} = 3.01 \times 10^{23}$
72)	What is the mass of water formed when 4 grams H ₂ and 64 grams of O ₂ combined	(c)	According to reaction 2H ₂ + O ₂ - 2H ₂ O
	together		Or 4g H ₂ reacts with 32gO ₂ to form 36g H ₂ O.
	(a) 66 grams (b) 18 grams		
-	(c) 36 grams (d) 66 grams		0
73)	0.5 mole of CH ₄ and 0.5 mole of SO ₂ gases have equal	(d)	1 mole of any substance has 6.02 x 10 ²³ molecules therefore 0.5 mole of different
	(a) volume (b) mass is grams		substances has no. of molecules equal.
	(c) total number of atoms (d) Number of molecules		
74)	Combustion analysis is performed for determining	(b)	Combustion analysis is performed only for determining empirical formula of organic
	(a) Number of ions		compounds.
	(b) Empirical formula of organic compound		

75)	Each molecule of haemoglobin is 68000 times heavier than one atom of	(b)	The size and mass of a molecule is compared with smallest sized atom i.e. H-atom
	(a) C (b) H		MEAN PROCESSION OF BUY AND
	(c) N (d) O		
76)	x-ray work has shown that the diameters of atom are of the order of	(b)	Size of atom is of the order of 2 x 10 ⁻¹⁰
	(a) 8 x 10 ^{to} m (b) 2 x 10 ^{to} m		
	(c) 8 x 10 ¹ m (d) 2 x 10 ¹² m		
77)	The value of R(General Gas Constant) is	(c)	In SI units the value of R
	(a) 8.3134 JK ⁻¹ mole ⁻¹ (b) 1.987 Cal k		= 8.3143 JK ⁻¹ mole ¹ 83143 Cal K ⁻¹ mole ¹
1	(c) Both a and b (d) 1.987 JK ⁻¹ mole ⁻¹		=1.987 Cal K ⁻¹ mole ⁻¹ (1 Cal = 4.18 J)
78)	The amount of matter is substance is called	(b)	Mass is defined as quality of matter in a
di	its	T	substance
1	(a) Weight (b) nuss	1	
	(c) Volume (d) Density		
79)	The standard for atomic mass is	(d)	Atomic mass of en element is the mass of one atom of that elements as compared to mass of
	(a) H (b) He		atom of C. taken as 12.
	(c)Ne (d) C	1 7 1	
80)	The S.I. units for energy are	(a)	In S.I. U = 1Nm
	(a) J (b) Caloric	1	
	(c) K (d) Cd	- Y	
81)	CH, is the chemical formula of	(d)	Formula of methane is CH ₄ the simplest hydrocarbon.
	(a) Ethane (b) Propane	1 6	nydrocarton.
	(c) Hydrogen (d) Methane	7/	
82)	H ₂ O ₂ is the chemical formula of	(d)	Hydrogen dioxide or hydrogen peroxide has H-O ₂ formula.
	(a) water (b) methane		1130 Tollina.
	(c)Alcohol (d) Hydrogen Peroxide		
83)	The empirical formula of chloroform is	(b)	Chloroform is the trichloro methane.
1	(a) CCL (b) CHCl,		SEKIES
-	(c)CH;Cl ₂ (d) CH;O		9 ======
84)	The molecular formula and empirical formul may be	a (c)	Some compounds have same empirical and molecules formula like H ₂ O. But some have
	(a) Identical (b) Different		different like benzene C _t H _o . Its empirical
	(c) Both a and b (d) None		formula is CH.
85)	The Avogadro's number is		Avorages determined the number of mulesule
93)	(a) 6.0 x 10 ²¹ (b) 6.022 x 10 ²³	(0)	Avogadro determined the number of molecule in 1 mole of the substance as 6.02x10 ²³
	101011310 (0101122310)		

c. NaCIO

a. $\frac{50}{100}$ x 6.022x10²³ b. $\frac{100}{50}$ x 6.022x10²³

How many carbonate ions are there in 50g of

91)

86)	Any substance having chemically identical atoms is called	(b)	An element has all atoms with same proton number.
	(a) Molecule (b) Element		
	(c) Compound (d) None		
87)	One 12th the mass of C ₁₂ is called (a) Atomic mass (b) A.m.u. (c) Both a and b (d) None	(b)	On carbon -12 scale, the relative atomic mass of C is 12. Therefore the unit to express the relative atomic mass (a.m.o) is $\frac{1}{12}$ th x 12 = 1 a.m.o
88)	Atomic weight of Ca is (a) 20 (b) 40 (c) 45 (d) 80	(b)	Ca has 20 protons and 20 neutrons in the nucleus.
89)	Tobacco contains a poisonous alkaloid called Nicotine. The molecular formula of nicotine is $C_{10}H_{14}N_2$ (molar mass = 162.23 g), the mass percentage of nitrogen in nicotine, is? a. 4.32% b. 8.23% c. 12.4% d. 17.3%	•	ARDA.
90)	A sample of an ionic compound contains 2.82 g Na, 4.35 g Cl, and 7.83 g O, the empirical formula of this compound is: a. NaClO ₂ b. NaClO ₂	d	

DIAMOND SERIES

Chemistry MCQs

1)	For production of characteristic K, X- rays, the electron transition if from:	C
	A)n 3 to 2 B)n 1 to n-2 C)n 2 to no 1 D) n 2 to n-3	
2)	The magnetic quantum number for the last sub orbital having 3 electrons in phosphorous ¹⁵ ₃₄ P is: 2018-Eng A)-1, 0, +1 B)-1, 0,-1 C)O,-1, +2 D)-1, +1,-2	Α
3)	If the required excitation voltage is given, for which element the x-rays spectrum consists of three spectral lines i.e. K _a kβ l _a A)Na b) boron C)K D)Ca	
4]	Energy of electron in first excited state of Hydrogen atom in atom is. a)2,8 x 10 ⁻¹⁸ b)0.545 x 10 ⁻¹⁸ c)-2.18 x 10 ⁻¹⁸ d)-1312.36	B Energy of 1st Excited state -3.4ev= 3.4x1.6x10 ⁻¹⁹ J/atom =-0.545x10 ⁻⁴⁸ J/atom.
5)	Which list shows electromagnetic waves in order of increasing frequency? A) Radio waves → gamma rays → ultraviolet → infra-red B) Radio waves → infrared → ultraviolet → gamma rays C) Ultraviolet → gamma rays → radio waves → infrared D) Ultraviolet → infra-red → radio waves → gamma rays	
6)	The charge on the electron and proton is reduced to half. If the present value of Rydberg constant is R., then the new value of Rydberg constant will be A) R/2 B)R/4 C)R/8 D) R/16	C
7)	In the discharge tube emission the cathode rays requires: a) Low potential and low prossure b) low potential and high pressure c) high potential and high pressure d) high potential and low pressure	SERIES
8)	Particles involves in an ordinary chemical reaction are: (a) Protons (b) Neutrons (c) Electrons (d) All of the above	С
9)	The constancy of e/m ratio for electron	В

	(a) Electron mass is 1/837th of proton	
	(b) Electrons are universal particles of all matter (c) Electrons are produced in discharge tube only (d) None of the above	
10)	The charge of electron was determined by the effect of electric field on rate of fall of oil droplets under gravity this was done by: (a) JJ Thomson (b) E Rutherford (c) R.A. Milliken (d) WC	c
11)	Which of the following rays has the longest wavelEngth? (a) Infrared rays (b) ultraviolet rays (c) Gamma rays (d) x-rays	
10	(c) Gamina rays (d) x-rays	
12)	The total energy of a Hydrogen atom in its ground state is: (a) zero (b) positive (c) negative (d) None	c
13)	The energy of electron in the excited state n=4 in hydrogen atom is; (a) -13.6eV (b) -3.4eV (c) -0.85eV (d) -1.5eV	
14)	The part of electromagnetic spectrum in which Lyman series lies is: (a) Visible region (b) Infrared region (c) Ultra violet region (d) X-rays	
15)	Which one of the following series are observed in the visible region of electromagnetic radiation. (a) Lyman series (b) Balmer series (c) Bracket series (d) Plunds series	В
16)	Transition from n = 4,5,6	SERIES
17)	The wave nature of an electron is illustrated by its: (a) photoelectric effect (b) Compton effect (c) penetrating effect (d) diffraction	D

18)	A ball of mass 1 gram is moving with a velocity of $10^{6}m - s^{-1}$. The De-broglie wavelEngth of the ball is: (a) $13.26 \times 10^{-36}m$ (b) $3.315 \times 10^{-36}m$	c
9	(c) $6.63 \times 10^{-14} m$ (d) $4.97 \times 10^{-16} m$	
19)	How many different values can m, assume in the electron sub-shell designated by quantum number n=5, 1=4?	D
	(a) 4 (b) 5	
201	(c) 6 (d) 9	B a f 15 ti v B T coll o
20)	The number of orbital's in 'M' shell of an atom is: (a) 1 (b) 4 (c) 5 (d) 9	D # of orbital in shell = $n^2 = (3)^2 = 9$
21)	If an atom exists in the excited state n = 5, the maximum number of transition takes place is: (a) 6 (b) 5 (c) 10 (d) 3	C # of transition (spectral lines) = $\frac{n(n-1)}{2}$ = $\frac{5(5-1)}{2}$ = $\frac{20}{2}$ = 10
22)	An orbital may never be occupied by:	C
23)	(a) I electron (b) 2 electrons (c) 3 electrons (d) 0 electron Nitrogen has three unpaired electrons according to: (a) Hund's rule rule (c) Paoli's exclusion principle(d) Thumb	OK
la constantina	rule	
24)	The atomic number of scandium is 21. What is its ground state electronic configuration? (a) 1s ² 2N ² 2p ⁶ 3N ² 3p ⁶ 3d ³ (b) 1s ² 2N ² 2p ⁶ 3N ² 3p ⁶ 3d ³ 4s ¹ (c) 1s ² 2N ² 2p ⁶ 3N ² 3p ⁶ 3d ³ 4s ² (d) 1s ² 2N ² 2p ⁶ 3N ² 3p ⁶ 3d ³ 4p ⁶	C
25)	The correct electronic configuration of Nickel (28) is: (a) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ² (b) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² 4p ¹ (c) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ² 4p ² (d) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ¹ 4p ³	SERIES
26)	The electronic configuration of gallium,	A
	atomic number 31 is: (a) $[Ar] 4s^2 3d^m 4p^s$ (b) $[Ar] 3s^2 3d^m 4p^s$	
	(c) $[Kr] 3s^2 3d^{40} 4p^4$ (d)	

	$[Kr]4s^2 3d^{01}4p^4$		
27)	Which is incorrect about ionization energy? (a) Ionization energy Depends upon the magnitude of nuclear charge. (b) Ionization energy depends upon the atomic radius (c) Ionization energy depends upon the shielding effect. (d) Ionization energy does not depend upon the penetration effect of the inner orbital.	D	
28)	Which of the following elements with the given electronic configuration has the highest ionization energy? (a) 1S ² 2S ² 2P ⁴ (b) 1S ² 2S ² 2P ⁴ (c) 1S ² 2S ² 2P ⁶ 3S ¹ (d) 1S ² 2S ² 2P ⁶ 3S ² 3P ³	В	
29)	X-rays are widely used as a diagnostic tool in Medicine because of its (a) Particle property (b) Cost of X-ray unit is low (c) High penetrating power (d) It is not electromagnetic waves	C	
30)	What are the values of principal quantum number and azimuthal quantum number for the last electron in Chlorine atom? (a) 1.6 (b) 1.3 (c) 3.1 (d) 6.1	C	A OK
31)	Choose atom that is not having a spin quantum number $\frac{1}{2}$. (a) C ¹³ (b) N ¹⁵ (c) F ¹⁹ (d) O ¹⁶	D	
32)	The e/m of canal rays: a. Varies with the nature of gas in discharge tube b. Is independent of gas in discharge tube c. Is constant d. None of these	^	of canal says depends upon the nature of gas.
33)	Which one has maximum e/m ratio? a. Cathode ray b. Canal rays c. Beta rays d. Both a and c	A	Cathode rays are electrons and electron have smaller massthan proton or any positive ion (canal ray) thus it has maximum e/m
34)	Which one of the following has maximum e/m ratio? a. Cathode rays b. Canal rays c. X-rays d. Gama rays	A	Cathode ray are actually electrons which has very smaller mass so it has maximum e/m ratio. While Gama-rays and X-rays are electromagnetic radiatiosn having e/m ratio is zero.

35)	Which of the following is not electromagnetic in nature? a. Infrared ray b. X-rays c. Y-rays d. Cathode rays	D	Cathode ray are electron having mass and charge so it is not electromagnetic radiations.
36)	Wave mechanical model of the atom mdepends upon? a. De-Broglie's concept of duality b. Heisenberg uncertainty principle c. Schrodinger wave equation d. All of these	D	Wave model I the atoms depends on De- Broglie's concept of duality, Helsenberg uncertainly principle and Schrodinger wave equation
37)		D	Is is the lowest electronic level, it can only absorb the energy, it cannot emit the energy because there is no other electronic level below it.
38)	The Balmer series in the spectrum of hydrogen atom fall in: a. Ultraviolet region b. Visible region c. Infrared region d. None of these	В	It is the visible region
39)	A line in Pfund series is obtained when an electron form higher energy level returns to: a. 1 st orbit b. 3 st orbit c. 5 th orbit d. 6 th orbit	C	For pfund series $n_1 = 5$ and $n_2 = 6.7.8$
40)	When the electron jump from 2 st 3 st , 4 st orbit to the 1 st then trasition is known as a. Balmer series b. Lyman series c. Pfund series d. Bracket seires	BV	for Lyman series $n_1 = 1$ and $n_n = 2.3.4.5$
41)	If n = 6 the number of standing waves? a. 6 b. 8 c. 36 d. 16	A	As $n\lambda = 2\pi r \Rightarrow n = 6 \Rightarrow 6\lambda = 2\pi r$ So, the number of standing waves for $n = 6$ is 6.
42)	The total values of magnetic quantum number for a given value of principal quantum number (n)? a. 21+1 b. N ² c. N-1 d. N+1	В	It is given as n^2 For 1^n shell = $(1)^2 = 1 => s$ For 2^{nd} shell = $(2)^2 = 4 => s$, px, py, pz For 3^{nd} shell = $(3)^2 = 9 => s$, px, py, pz, dxy, dyz, dzx, dx ² y ² , dz ²
43)	The sub-shell which does not exist, has the quantum numbers: a. N = 2,1=0 b. N = 2,1=1 c. N = 2,1=2 d. N = 3,1=0	С	Because n and I can't have same values.

44)	Out of the following, which is the correct set of quantum numbers for the outermost electron of potassium atom (Z = 19)? N 1 m s a. 4 3 2 -1/2 b. 4 2 0 -1/2 c. 4 1 0 +1/2 d. 4 0 0 -1/2	D	For K the electronic configuration is $4s^4$ $N = 1$, $1 = 0$, $m = 0$, $s = \frac{-1}{2}$
45)	The two electrons in the first shell will differ in the values of: a. N b. L c. M d. S	D	No two electrons in the same orbital have the same spin according to pauli exclusion's principle.
46)	Which one of the following set of quantum numbers is not allowed? a. N = 1, 1 = 0, m = 0, s = -1/2 b. N = 2, 1 = 1, m = 0, s = +1/2 c. N = 2, 1 = 1, m = +1, s = +1/2 d. N = 2, 1 = 1, m = +2, s = 0	D	N = 2. 1 = 1, m = +2, s= 0 2p for p orbital m should be +1, 01
47)	The orbital with n = e and 1 = 2 is: a. 3s b. 3p c. 3d d. 3f	C	N = 3, 1 = 2 => 3d
48)	In which orbital electron has maximum energy? a. N = 4, 1 = 0, m = 0, s = +½ b. N = 3, 1 = 1, m = -1, s = -1/2 c. N = 5, 1 = 3, m = -2, s = -1/2 d. N = 2, 1 = 1, m = +1, s = -1/2		All have same n + 1 values which is 5 but the n value of 3d is lower so it has the lowest energy.
49)	Which one of the following orbitals has the lowest energy? n. 3d b. 5s c. 4p d. 4f	AV	According to $n + 1$ rule. $4s \Rightarrow n + 1 = 4 + 0 = 4$ (lowest energy level) $3d \Rightarrow n + 1 = 3 + 2 = 5$ $4p \Rightarrow n + 1 = 4 + 1 = 5$ $4d \Rightarrow n + 1 = 4 + 2 = 6$
50)	Which quantum number accounts for the appearance of fine lines in hydrogen spectra? a. Subsidiary quantum number b. Secondary quantum number c. Azimuthal quantum number d. All are correct	D	Magnetic quantum number has been obtained by the solution of schrodinger's wave equation.
51)	The azimuthal quantum number 1 = 2 then 'm' can have values as: a. +1, -1 b. +1, 0, -1 c. +2, +1, 0, -1, -2 d. +3, +2, +1, 0, -1, -2, -3	C	1-2 m=+1, 0, -1 =+2,+1, 0,-1,-2
52)	how many nodes are present in 3s orbital? a. 0 b. 1 c. 2 d. 3	С	=> Angular node = 1 For s orbital 1 = 0 So angular node = 0 => radial node = n - 1 - 1 = 3 - 0 - 1 = 2 Total node = Radial node + angular node = 2 + 0 = 2

53)	How many radial nodes are present in 7s orbital?	A	Use the formula to find the radial nodes = $n - 1 - 1 = 7 - 0 - 1 = 6$
	a. 6		
	h. 9		
	c. 8		
	d. 7		
54)	The orbital dz consists of:	В	Dz2 orbital has two lobes and one ring
100000	a. 4 lobes		•
	b. 2 lobes		· Ò 1
	c. 1 lobes		
	d. Zero lobe		9 R
			///
55)	What is the correct outer electronic	A	The expected electronic configuration is to
	configuration of Cu (Z = 29)?	N. W.	be 4s2 3d9 but the one's electron is shifted to
	a. 4s ¹ 3d ¹⁰	1	3d subshell to fill it completely because
	b. 4s ² 3d ⁹		
	c. 4p ² 3d ⁶		fully filled orbital is more stable than
	d. 3s ² 3d*		partially filled so the electronic
	A 4: 38:30	1 3	configuration will be 4s1 3d10.
56)	Orbitals having same energies are called:	A	Orbital having same energies are called
-	Degencerate orbitals		degenerate orbitals.
40	b. Hybrid orbitals		
1	c. Valence orbitals		
	d. D - orbitals		
57)	Which one of the following has the same	В	Alpha particle is Helium nucleus (He ⁺²) has
	number of electrons as an alpha particle?		no electron. H' is proton which has also no
	a. H		electron. So, both have zero electorns.
	b. H'		
	c. H;		
	d. He	4 5	
58)	What is the proton (atomic) number of an	D	Fe= 4s ² 3d ⁶ (Valence shell electronic
	element that has four unpaired electrons in its	V	configuration)
	ground state?	1	11 11 1 1 1 1
	u. 6		4s ² 3d ⁵
	b. 14	9 /	4-unpaired electrons
	c. 16	1 0	
2000	d. 26	11	
59)	Which of the following particles would, on	C	Electronic configuration of nitrogen
	losing an electron, have a half-filled set of P		1s ² 2s ² 2p ³
	orbitals?		11 1 1 (Valence shell)
	a. C		In case of N ⁻¹
_	h. N		11 11 1
1.6	C N NA DIF	1	By losing one electron by N 1 the half-filled
	a. 0'		p-orbital will be obtained.
60)	For which element does its ground state atom	С	In the ground state of carbon all the
50)	have no paired p electrons?	-	electrons in p orbital are unpaired.
	n. Carbon		Electronic configuration of carbon (ground
	h. Oxygen		[20] 20 : 10 : 10 : 10 : 10 : 10 : 10 : 10 :
	c. Neon		state)
			$1s^2$, $2s^2$, $2p^2$
	d. Magnesium		11 11 11
			ls 2s 2p
61)	d. Magnesium The electronic configuration of MCr is:	С	ls 2s 2p
61)	d. Magnesium The electronic configuration of 34Cr is: a. 3d ²	С	
61)	d. Magnesium The electronic configuration of MCr is:	C	1s 2s 2p Expected electronic configuration of C _r is =

	c. 3d*4s* d. None of these		shifted to 3d orbital because half-filled orbital is more stable than partially filled orbital thus its electronic configuration will be 4s ¹ 3d ⁵ .
62)	Most of the alpha particles were deflected at larger angles in Rutherford experiements because of a. Positive nucleus in center b. Empty spaces in atom c. A-particle overlapping d. None	Α	A-particle hav dipositive charge and nucleus have also positive charge thus nucleus repel the a-particle through various angles.
63)	What did Millkan determined in his experiment? a. Carge on electron b. Charge on electron is quantized c. Weight of charged droplets d. Both a and b	^	Millikan determined the charge on electron. He concluded that charge on each droplet is an integral multiple of the smallest charge, it means that charge is quantized.
64)	In Millikan experiment several droplets created by atomizer which droplet has the highest downward velocity a. 0.021 mg b. 0.003 mg c. 0.11 mg d. 0.032 mg	c	The downward velocity due to gravity is given as v mg so the droplet having larger mass should have highest downward velocity.
65)	Millikan's drop experiment can be performed with drops of a. Small size b. Large size c. Any size d. None	A	Millikan's drop experiment can be performed on small oil droplets. Larger drops have greater force of gravity, we have to apply high electric field to balance the weight of larger drop which may not be possible, so it may not be possible to perform Millikan's experiement in drop of any size.
56)	The instrument which measures the absorbance or emission of intensity and frequency is called (a) Spectrophotometer (b) Polarimeter (c) Glucometer (d) Calorimeter	(a)	The radiations emitted are seen through a spectrometer. It measures the wavelength, frequency etc. of radiations.
67)	Photons of yellow colour are energetic than violet colour (a) More (b) Less (C) Equal (d) None	(b)	The wavelength of yellow radiations region is 580 - 600 nm and that of violet is 400 430 nm. Shorter the wavelength of radiation higher is the frequency and greater is the energy.
68)	Which is the units of length (a) Angstrom (b) Poise (c) H (d) None	(a)	1 Å= 10 10 m.
69)	Balmer's series is in ———region (a) Visible (b) U.V.	(a)	The wave numbers of the lines emitted for H- atom are 15.21 x 100 m (Ha) to 25.18 x 105 m. lie in the visible region, which are called Balmer

	(C) 1.R.	(d) None		lines.
70)	Spectrum of with (a) H (c) Be	He is expected to be similar (b) Na (d) Lit	(d)	The atomic number of He is 2 i.e. it contains two electrons. Lit also contains having two electrons (Atomic Number of Li is 3). And spectrum of an atom or ion depends upon number of electrons.
71)	(a) Size	antum number represents orbital (b) Shape ons (d) Nuclear stability	(c)	Magnetic quantum number tells us the number of different ways in which a given S. P. d or f-subshell can be arranged along the x, y and z-axes. These different ways are different orientations.
72)	(a) Degenera	trons in the same orbital	(b)	Two electrons in an orbital have opposite spins according to Pauli's Principle.
73)	If 1 = 2 then orbital (a) s (c) d	(b) p. (d) f	(c)	A subshell may have different shapes depending upon the value of T. When 1 = 2, it is a d-subshell with complicated shapes.
74)	(a) In the (b) In the (c) Near	d state of an atom the electron is ne nucleus ne second shell rest to the nucleus Farthest from the nucleus	(c)	Ground state is the lowest energy state. Electron closest to the nucleus is in lowest energy state.
75)	electron goe	h) 75	(c)	According to Auf bau principle 7p is the next subshell after filling of 6d since both have same n+1 value i.e. 8.
76)	(a) 0.329Ao	f first orbit of hydrogen atom (b) 0.429Ao (d) 0.229Ao	(c)	According to Boh, theory radius of an orbit For H-atom Z=1 and = 0.529° A And radius of first orbit of H-atom = 0.529° A(n^2)= 0.529° A(12^2)
77)	The divisib (a) Stoney (c) Millikan	lity of atom was shown by (b) J.J. Thomson (d) Rutherford	(b)	J.J. Thomson concluded from his experiments that all atoms contained negatively charged particles called electrons.
78)	tube is reduce becomes me (a) Gas glow (b) Gas ioni		(c)	When the pressure inside the tube is reduced, and a high voltage 5000 - 10000 volts is applied, an electric discharge take place producing a uniform glow

22

	(d) Gas conducts electricity		
79)	Goldstein discovered that besides the cathode rays, another type of rays are produced in the discharge tube which are called (a) Alpha ryas (b) Beta rays (c) Positive rays (d) Gamma rays	(c)	When high speed cathode rays (electrons) strike the gas molecules in the discharge tube, they knock out electrons form the gas molecules and positive ions are produced
80)	The value of Plank's constant 'h' is (a) 6.625 x 10 ^{-M} (b) 6.625 x 10 ^{-M} J sec (c) 6.625 x 10 ^{-M} KJ (d) 6.625 x 10 ^{-M} K Cal	(b)	It is a constant value
81)	The regions of the visible spectrum are (a) Threesbaden (b) Seven (c) Eight (d) Five	(b)	Violet, indigo, blue, green, yellow, orange and red radiations are the visible radiations.
82)	After performing millikan oil drop experiment in laboratory, a professor told his students that charge on 500mg of electrons must be a3.52 x 10 ⁷ C b3.52 x 10 ¹⁷ C c8.8 x 10 ⁷ C d8.8 x 10 ⁷ C		
83)	Total charge on 10 electrons is a1.6 x 10 ⁻²⁰ C b1.6 x 10 ⁻¹⁷ C c3.2 x 10 ⁻¹⁹ C d1.6 x 10 ⁻¹¹ C	D	

DIAMOND SERIES

If E₁, E₂ x E₃ and E₄ are the energies of B electron in first, second, third and fourth

shells of hydrogen atom then

a. E₂ - E₁ < E₃ - E₂ < E₄ - E₅
b. E₂ - E₁ > E₃ - E₂ > E₄ - E₅
c. E₂ - E₁ < E₃ - E₂ > E₄ - E₅
d. E₂ - E₁ > E₃ - E₂ < E₄ - E₅

CHAPTER 3:

THEORIES OF COVALENT BONDING AND SHAPES OF MOLECULES

1)	The bond energy of H₂ molecule (H₂ →	D
	2H) is: A) 436 Kj/mol B) 40.7 Kj/mol	
	C) 272 kj/mol D) 436 Avogadro's	
	no Ki/mol	
2)	Condidering the molecular orbital theory	A
	(MOT) choose the correct relative	
	energies order:	
	a) σ15 < σ*15<σ25<	JAN 1
	σ*25<σ2Px<π2Pz=πzPz	
1	b) a15 < a*15 <a25<< td=""><td></td></a25<<>	
-	σ*25<π2Py=π2Pz<π2Pzx	
400	c) \silf < \si^15 < \si^215 < \si^225 <	
	σ*25<π2Px=π2px<σ2Py	
	d) a15 < a*15 < a25 <	
- 21	σ*25<π2py<π2pz<π2px	c
3)	Which of the following ions contain one unpaired electron?	
	A)Zn ⁻² B)K ⁻¹	
	C)Cu ⁻² D)Na ¹¹	
4)	According to VSEPR theory, in which of	B
250	the following molecules the electron pair	
	geometry is;	
	A)CH ₄ B)NH ₃	
	C)BF ₃ D)None of the	3 //
	above	1 /
5)	The orbital with highest energy is	/c/
	A)Hybrid B)Un-hybrid	
6)	C)Molecular d) all are of equal energy The unpaired electron in the molecule of	A
o,	NH ₃ is:	^
	A)0 (b)1	
	c) 2 d)3	Jeedies
7)	What causes a sharp increase in the	
	energy with a further decrease in the	
	distance between atomsA and B after	
	bond formation?	
	(a) Attraction of atoms A and B	
	(b) Repulsion of nuclel of A and B and electrons of A and B	
	(c) Attraction of nucleus of A and	
	electron of B	
	(d) Bond formation	
	No. 2 and a second	

8)	During the formation of a chemical bond between two atoms the forces which are operative are: (a) Both forces of attraction and repulsion	A
	(b) Either force of attraction nor repulsion (c) Only force of attraction	
	(d) Only force of repulsion	
9)	Which of the following elements with a given electronic configuration has the highest ionization potential value? (a) 1s ² 2s ² 2p ³ (b) 1s ² 2s ² 2p ⁴ (c) 1s ² 2s ² 2p ⁶ 3s ¹ (d) 1s ² 2s ² 2p ⁶ 3s ² 3p ³	^
10)	Which one will show ionic bonding? (a) NaH (b) PbCl ₄ (c)HCl (gas) (d)PCl ₄	
11)	The longest bond is of: (a) H - 1 (b) H - O (c) H - S (d) H - Cl	A Electronegative difference ∝ 1 bond length
12)	Which one of the following compounds has the shortest carbon-halogen bond? (a) CH3F (b) CH ₃ Cl (c) CH ₃ Br (d) CH ₃ I	
13)	CO is ISO-structural with: (a) HgCl (b) SnCl (c) C H (d) NO 2	
14)	Oxygen molecule has two unpaired electrons. It is therefore. (a) Ferromagnetic (b) Diamagnetic	Dy
15)	(e) Electromagnetic (d) Paramagnetic Which of the following hybridization can explain the shape of BeCl ₂ ? (a) sp ² hybridization (b) sp hybridization	В
-	(c) sp ³ hybridization (d) dsp ² hybridization	OFFIC
16)	Which of the following pairs of molecules have similar geometry? (a) CO ₂ and SO ₂ (b) BF ₃ and NH ₃	DEKIES
17)	(e) MgCl ₂ and AlCl (d) CH ₄ and SiH ₄ How many sigma bonds are there in CH ₂ = CH-CH = CH ₂ : (a) 6 (b) 9	В
18)	(c)11 (d)4 The bond angle between H - C - C bond in ethane is: (a) 109.5 (b) 120	A

	(c) 90 (d) 107.5	
19)	What type of hybrid orbits are used by the	В
	earbon atoms in C ₂ H ₄ ?	
	(a) sp (b) sp ²	
	(c) d ² sp ² (b) sp ³	
20)	Species in which the central atom uses Sp	
	hybride orbital in its bonding is:	
	(a) PH, (b) NH,	
	(e) SbH 3 (d) C2 H2	
21)	Bond energy of covalent bond decreases	С
	with the increase in:	
	a) Polarity (b) Multiplicity	
	(c) Size of atom (d) All of the above	
22)		C
- 2	CH2	
1	(a) C-1 and C-2 are SP2 hybridized	

40	(b) C-1 and C-2 are SP hybridized and C-	
1	2 and C-3 are SP2 hybridized	
	(c) All the carbon atoms are SP2	
	hybridized	
	(d) All the statements are wrong	
23)	NH4* and SO42 ions have	Geometry of a molecule depends on the lone pair and bond pair both of them are sp'
	a. Tetrahedral geometry	hybridized thus both have tetrahedral geometry.
	b. Triangular geometry	hybranzed mas ton; have retraned at geometry.
	c. Pyramidal geometry d. Square planner geometry	
241	MTBE is a constituent of petrol. What are the	VESPER theory is helpful in predicting the
2.1	value of angle P and Q in a molecule of	bond angles in compound like MTBE the bond
	MTBE?	angles p and q are 109° and 105° respectively.
	CH ₃	
		1 /
		,
	CH3 TC TO TCH3	
	l angle 9	
		0
	Cu.	SERIES
1	CH ₃	
-	a. Angle p = 90", angle 0 = 105"	
	b. Angle $p = 90^\circ$, angle $0 = 185^\circ$	
	 c. Angle p = 109°, angle 0 = 105° d. Angle p = 109°, angle 0 = 185° 	
25)	Which of the following molecules is not	D PF3 has tetrahedral geometry and its shape is
231	planner?	trigonal pyramidal which is not planner.
	a. Benzene	The state of the s
	h. Ethanc	
	c. Boron trifluride	
261	c. Boron trifluride d. Phosphorous trichloride	A Structure of BeCl ₂ is linear because Be is sp

	a. Linear b. Tetrahedral c. Trigonal d. None of these	hybridized and have no lone pair Cl - Be - Cl	
		Linear Structure	
27)	What is the approximate value of the O-C-O D bond angle in thanoic acid? a. 45" b. 90" c. 109" d. 120"	The bond angle in ethonic acid is 120° because the carbon is sp° hybridized. H C C O H 120 O H	
28)	N which one of the following pairs of A molecules have similar shapes? a. alCl ₁ and BCl ₃ b. AlCl ₃ and PCl ₃ c. BF ₃ and NH ₃ d. BeCl ₂ and H ₂ O	AlCI, and BCI, both have trigonal planner shapes because they have same hybridization that is sp ² and no lone pair. CI CI CI CI CI Al B I CI CI CI CI	
29)	Lateral overlapping expected in: a. Sigma bonds b. nBonds c. Ionic bonds d. Methallic bonds	Shape of AlCI ₃ and BCI ₃ Lateral overlapping (sidewise) is weak overlapping which results in a weaker bond called r-bond during bond formation.	
30)	In the molecule CH ₂ = C = CH ₂ , the hybrid C state of carbon number 2 is: a. Sp ³ b. Sp ³ c. Sp d. Dsp ¹	The carbon number 2 in CH ₂ = C = CH ₂ has steric number 2. As steric number = no of attached atom to carbon + lone pair 2 + 0 = 2 so it is sp hybridized	
31)	In SO ₂ molecule, S atom is: a. Sp ³ hybridized b. Sp ³ hybridized c. Sp hybridized d. Dsp ³ hybridized	SO ₂ Serie number = number of atoms attached to sulpher atom + lone pair = 2 + 1 = 3 So it is sp ² hybridized	
32)	In PCI, insolecule the phosphorus atom is: a. Sp' hybridized b. Sp'd hybridized c. Sp'd' hybridized d. Sp' hybridized	For PCI, Steric number = attached atom to phosphorous + lone pair = 5 + 0 = 5	
33)	Which hybridization occurs in SO ₃ ? a. Sp ² b. Sp c. Dsp ² d. Sp	So hybridization of phosphorous is sp ³ d Steric number helps us to determine the type of hybridization. Steric number =No, of atoms bonded to central atom + No, of lone pairs of electrons Steric number = 3 + 0 = 3 So Sulphur is SO ₃ is sp ² hybridized	
34)	Which of the following compounds gives sp ³ D hybridization? a. H ₂ O b. NH ₃ c. CH ₄ d. All the above	All these molecules have steric number 4 so they have sp ³ hybridization of central atom.	
35)	In which one of the following sp ³ D hybridization occurs?	For CH ₄ Steric number = 4 so sp ³ hybridization For KMnO ₄ as Mn is attached to four oxygen so	

	a. Ch ₄ b. KMnO ₄ c. H ₂ SO ₄ d. All of them		steric number = 4 So, it is sp' hybridized In H ₂ SO ₄ , sulphur is attached to four oxygen, so steric number = 4 It is sp' hybridized.
36)	Among the following the paramagnetic is: a. NO b. NO c. NO d. Both a & c	D	Unpaired electrons give the paramagnetic property to a molecule. Both NO and NO have unpaired electrons so they are paramagnetic.
37)	Oxygen molecule is paramagnetic because it has: a. Less N _b than N _a b. More N _b than N _a c. All electorns are parired d. Unpaired electrons	D	Because presence of unpaired electrons is responsible for the paramagnetic nature of a molecule. O ₂ showing paramagnetic nature because it has 2 unpaired electrons.
38)	Molecular orbitals are a. Delocalized b. Localized c. Normalized d. All of these	A	Molecular orbitals which are not confined between two adjacent bonding atoms but actually extend over three or more atoms, are called delocalized molecular orbitals.
39)	Which among the species O_2^+ , O_2^- , O_2 and O_2^{2-} is diamagnetic? a. O_2^+ b. O_2^- c. O_2^- d. O_2^{2-}	D	All of the given species have unpair electron while O ₂ ²⁻ has no unpair of electron so it is diamagnetic.
40)	That molecule of Ne; does not exist because: a. Nb > Na b. Nb = Na c. Nb > Na d. None of these	H	The Ne; molecule does not exist because its bond order is zero. Bond order is zero when $N_h = N_s$ as bond order = $\frac{1}{2}(N_h - N_s) = \frac{1}{2}(2 - 2) = 0$
41)	Which information is obtained from bond order? a. Stability of the molecule b. Bond dissociation energy c. Bond length d. All of them	D	Bond order a stability Bond order a bond length Bond order a Dissociation energy
42)	If there is one electron in each atomic orbital then in bond formation: a. Electrons will go to bonding molecular orbital b. Electrons will go to antibonding molecular orbital c. One electron will go to bonding and the other to antibonding molecular orbital d. The electron will stay in their own atomic orbitals)	Electron from atomic orbital will go to bonding molecular orbital for bond formation because bonding molecular orbital have lower energy. So electrons tend to go first in bonding molecular orbitals.
43)	The bond formed between the two helium atoms will be: a. Sigma bond b. π bond c. Helium bond d. No bond will be formed	D	no bond will be formed as He; bond order is zero due to equal number of electrons in bonding and anti-bonding molecular orbitals.

44)	Which one contains the strongest carbon C hydrogen bond?	The ethyne carbon is sp hybridized thus it is more electronegative and have more 's'
	a. Ethane b. Ethane c. Ethyne	character bond length a 1/4s'character bond length a 1/8ond strength
	d. Propane	Della Fit Clight
45)	The C - C bond length is maximum in a. Ethane b. Ethane c. Ethyne d. Equal in all	The C - C bond length is maximum in ethane as it has a weaker single covalent bond sp ³ hybridized having less 's' character as Bond length a 1/Bond strength Bond length a 1/Is'Character So, bond length of ethane is maximum
46)	Which of the following bonds required the C largest amount of energy to dissociate into atoms concerned? a. Cl - Cl bond in Cl ₂ b. C - C bond in C ₂ H ₂ c. N = N bond in N ₂ d. O = O in O ₂	Bond dissociation energy depends on Bond dissociation energy a multiple of bond bond dissociation energy a 1/bond length
47)	If the sharing of an electron pair is unequal and the atom have an electronegativity difference of 1.4 to 1.6, what is this type of sharing called? a. lonic b. Covalent c. Polar covalent d. Metallic	If the electronegative difference between 0.9 and 1.7 bond will be covalent and polar.
48)	Which one of the following is the most stable B molecule? a. Thene b. Acetylene c. Propene d. 1 - Butene	Acetylene is the stable compounds as compare to alkenes (1-butene, ethane, propene) because they are less reactive towards electrophilic reaction as compare to alkenes. The pie electron cloud of alkyne make a cylindrical electron-cloud around the triple bond make it more stable.
49)	The compound which contains both ionic and B covalent bond is: a. CBr ₄ b. CKN c. KCl d. H.	KCN contains both covalent and ionic bonds. There is ionic bond between K* and CN* ions and covalent bond between C and N in CN*
50)	The two fluorine atoms form a bond with A each other, the bond will be: a. / Sigma b. Sigma star c. n d. Pi star	A sigma bond is formed by the overlap of two p-orbitals linearly. The covalent bond between two fluorine atoms is a sigma bond formed by the overlap of two half filled 2p orbital one from each atom of fluorine.
51)	In which of the following does ionic bonding D occur between the named atoms? a. Aluminium and chlorine in the trifluoride b. Boron and fluorine in boron trifluoride c. Hydrogen and chlorine in hydrogen	As the electronegativity difference between hydrogen and sodium atoms is 1.2 which is greater than 0.99 so it is ionic.
	chloride	

	 d. Hydrogen and sodium in sodium hydride 		
52)	Which one is the directional bonds? a. Covalent b. Coordinate covalent c. Hydrogen bonding d. All of the above	D	Covalent, co-ordinate covalent bond and hydrogen bonds are directional in nature.
53)	Which of the following molecules has a net dipole moment? (a) CO ₂ (b) CS ₂ (c) SO ₂ (d) CCI ₄	(c)	Soz molecule is an angular molecule with an angle less than 120°. Therefore the individual S- O bond moments cannot be cancelled out. In all other cases individual bond moments cancel each other effect giving zero dipole.
54)	Which of the following bonds is least polar? (a) H. Se (b) P Cl (c) H. Cl (d) N Cl	(d)	Polarity of a bond depends upon the difference in electronegativity of bonded atoms. ON moving across the periodic table form left to right, the electronegativity difference reduces and bond polarity reduces.
55)	During the formation of a chemical bond the potential energy of the system (a) Decreases (b) Increases (c) Does not change (d) None of these	(a)	The bond formation between the two atoms is the increase in attraction which means decrease in potential energy.
56)	In which of the following theories the hybridization is considered (a) VSEPR (b) Lewis (c) Molecule orbital (d) Valence bond	(d)	Atomic orbital hybridization gives a satisfactory explanation for valency of the elements. Valence bond theory tells the number of bonds made by atoms equal to their number of half-filled orbitals. In certain cases the number of half-filled orbitals for bond making is due to excitation of electrons. Excitation causes hybridization.
57)	The bond order for Hez molecule is (a) zero (b) 1/2 (c) 1: (d) 2	(a)	Bond order= No of electron in bondingmolecular orbitals - in antibonding M-0 For He ₂ the bond order = $\frac{2-2}{2} = \frac{\text{zero}}{2} = 2\text{ero}$
58)	The bond order O, molecule is (a) 1 (b) 2 (c) 3 (d) zero	(b)	The bond order of O_2 (No. of electrons in B.M.O.) - No. of electrons in B.M.O.) $2 = \frac{6-4}{2} = \frac{4}{2} = 2$.
59)	The C- Chond length in ethane (C2H6) is (a) 154 pm (b) 133 pm (c) 120 pm (d) 105 pm	(a)	In C ₂ H ₆ there is C—C single bond. And C—C single bond length is always 154 Pm.
60)	The C = C bond length in ethene (C ₂ H ₄) is (a) 154 pm (b) 133 pm (c) 120 pm (d) 105 pm	(b)	In C_2H_4 there is $C = C$ double bond and its length is 133pm.
61)	The C=C bond length in ethyne is (a) 154 pm (b) 133 pm (c) 120 pm (d) 105 pm	(c)	The bond length when there is triple bond between two C-atoms is always 120pm.

62)	The bond between H - H is	(a)	H-atoms are small sized and are closer than H	
	 (a) Stronger than the bond between H — Cl (b) Weaker than the bond between H — Cl (c) Neither stronger nor weaker than the bond between H — Cl (d) None of these 		and Cl atoms in HCl.	
63)	One of the causes of reactions is that the systems attains the energy state which is of (a) Higher in energy (b) Lower in energy (c) Balanced in energy (d) Equal in energy	(b)	The bonds formed in the products are stronger i.e. stable bonds. These stable bonds are due to greater attractions which lower energy of the products.	
64)	The polarity of molecule is expressed by (a) Bond strength (b) Dipole moment (c) Bond length (d) Shape	(b)	dipole moment is the vectorial sum of the individual bond moments in a molecule. Dipole moment of a molecule means that there is a net positive pole and a negative pole in the molecule.	
65)	The electro-negatively difference for ionic bond must be greater than (a) 1.6 (b) 1.7 (c) 1.8 (d) 1.0	(b)	In this case more than 50% the bond is ionic,	
66)	The VSEPER theory explains the of molecules (a) Number (b) Kinds (c) Geometry (d) None	(c)	Sidgwick and powell pointed out that the shapes of molecules could be represented by the number of electron pairs in the outer orbit of the central atom. These pairs are arranged at maximum distance apart given a definite shape to the molecule.	
67)	The electro-negativity difference of H—Cl is 0.9 so it should be bond (a) Covalent (b) Ionic (c) Coordinate covalent (d) Metallic	(a)	The electronegativity difference is less than 1.7, hence the bond is covalent, but partically ionic i.e. polar.	
68)	If two lone pairs are present then bond angle of tetrahedral compound reduces to degrees (a) 109.5°. (b) 107.5° (c) 104.5° (d) None	(e)	The lone-pair lone pair repulsion is greater due to which the bond angle 109.5 (normal tetrahedral angle) contracts to 104.5°	
69)	The energy of the non-bonding molecular orbital is than bonding molecular orbital (a) lesser (b) Great (c) Equal (d) None	(b)	Non-bonding molecular orbital is away from the nuclei. There is greater nucleus-nucleus repulsion which causes greater energy then that of bonding molecular orbital.	
70)	A covalent bond may be (a) 100% covalent (b) Partially ionic	(d)	Covalent bond between two like atoms is 100% covalent whereas the covalent ond between two unlike atoms is partially ionic covalentond.	

	(c) 100% ionic (d) Both a and b		
71)	The properties of a substance aare determined in a party by	(d)	The nature of chemical bond will tell us what kind of reaction are represented by that
	(a) Ionic bond (b) covalent bond (c) Hydrogen bond (d) Chemical bond		compound ionic bond present in the compound will give fast reactions of that substance.
72)	Formation of MgO is an example of	(a)	The electronegativity difference between Mg
**1	(a) ionic bond (b) Covalent bond	,_,	and O is 2.3 which is greater than 1.7, hence the bond is ionic.
	(c) polar bond (d) double covalent bond		
73)	The inter-nuclear distance are at which the energy of the two atoms bonded together is minimum as compared to the isolated atoms is called	6	When the two atoms approach distance of minimum energy, then the two atoms form a stable system and the distance between them is the compromise distance or bond length.
1	(a) Equilibrium bond distance (b) Bond length (c) Both a and b (d) None		
74)	Elements of group I and II combined with the elements of group Vi and VII to form (a) Ionic bond (b) Covalent bond (c) Polar bond (d) Polar covalent bond	(a)	 Il group elements have low ionization energies and Vi, VII group elements have high electrons affinities. The bond between them is ionic bond.
75)	The ionic bonds are (a) Unidirectional (b) Bi-directional (c) Non-directional (d) Multi-directional	(c)	The electrostatic force of attraction of a cation by oppositely charged ions is in all directions therefore ionic bond is in all directions or non-directional.
76)	The bond pair electrons remain between two miclel and are called electrons	(c)	The bond pair electrons are concentrated in the region between the two nuclei. Such pair is localized.
	(a) Valance (b) Stable		
77)	(c) Localized (d) None The covalent compounds in non-polar solvents are conductors of electricity (a) Good (b) Bad	(b)	The these solutions carry no electric charge i.e. there are electrically neutral.
	(c) Poor (d) Excellent	-	OFFIC
78)	The covalent bonds are (a) Unidirectional (b) Bi-directional (c) Non-directional (d) Multi-directional	(d)	A polyvalent atom makes the covalent bond in different directions e.g. C in CH ₄ makes 4 covalents in tetrahedral manner.
79)	The degree of polarity of molecule is known as its (a) Dipole moment (b) Moment arm (c) Bond energy (d) Ionic character	(a)	Dipole moment $\{u = q \mid x \mid t\}$ measures the strength of positive and negative poles in a molecule.