1

Chemistry Solved 300 MCQ,S

Prepared by: Babar Joya

Like This Page For More Study Material

http://www.facebook.com/techwithease **Any Question???**

Ask Me at http://www.facebook.com/babarjoyaofficial Like http://www.facebox

→ CHEMISTRY XII – ALL CHAPTERS

- How many elements have been discovered so far? 1
 - A) v 100 R) 110 C) 120 D) 150
- 2. Which of the following discovery resulted in a revision of the Mendeleev law?
 - 41 The nucleus of atom by Rutherford
 - The elements polonium and radium by the curies C) ▼ Atomic numbers by Moseley
 - D) X Rays by Roentgen
- Who classified the then known elements into metals, nonmetals and their derivatives A) Doberenier B) √ Al-Razi
 - - C Newland's D) - Mendeleev
 - In 1829, a German chemist, made use of the idea of relationship between atomic weights and properties of elements for the classification of elements.
 - Α١ Doherenier
 - R) Ai-Razi Cly/ Newland's Mandalany D)
 - The law of octaves was given by
 - Doherenier

CVV Mendeleny's Periodic law

- R) AL-Razi C) V Newland's D) None
- "Physical and chemical properties of elements are periodic functions of their atomic weight". This is called
- A) Doberenier's law of Traids Newlands law of Octaves R)
- 7 Lother Mayer arranged the elements in order of their increasing atomic weights and

D) None

found that A) V Physical properties of the elements were the periodic function of their atomic weights.

	B)	Chemical properties of the elements	s were	the periodic function of their atomic			
	C)		were	the periodic function of their atomic			
	-)	number.	Weie	the periodic function of their atomic			
	D)		were	the periodic function of their atomic			
	,	weights.	, were	and periodic function of their atomic			
8.	Mode	ern classification of elements is based	on				
	A)	Doberenier's law of Traids	B)	Newlands's law of Octaves			
	C)	Mendeleev's Periodic law	D) V	None			
9.	Whic	h property is same in elements of san	ne groi	up of periodic table?			
	A)	Ionization potential	B)	Electro negativity			
	C)	Electron affinity	D) V				
10.		ralency, ionization energy, electron af	finity	and electro negativity of elements are			
	A) V	Atomic size	B)	Properties			
	C)	Atomic weight	D)	Family group			
11.	Whic	h of the following is the set of most e	lectror	negative elements?			
**	A) V	N.O.F	B)	Ca.Sr.Ba			
	C)	Na, Mg,Al	D)	Fe, Co, Ni			
	٠,	THE STATE OF THE S	-,	10,00,11			
12.	Whic	Which of the following elements has maximum ionization potential?					
	A) V	Mg	B)	Al			
	C)	Na	D)	К			
13.	Each	vertical column of the periodic	table	includes elements with chemical			
	chara	cteristics that are in general					
. (A)	Non identical	B) √	Similar			
D	C)	Different	D)	Similar as well as different			
14.			table	includes elements with chemical			
		ecteristics					
	A)	Identical	B)	Similar			
	C) V	Different	D)	Similar and different			

8.

15.	٨٠٠٠	rding to the Modern periodic law	the che	mical properties of the elements are		
periodic functions of their			inical properties of the elements are			
	A)	Density	B) √	Atomic number		
	c)	Atomic mass	D)	Mass number		
	-,		-,			
16.	The 3	d transitional series contains elem	ents hav	ing atomic numbers from		
	A)	22 to 23	B) √	21 to 30		
	C)	21 to 31	D)	21 to 29		
17.	Elem	ents in group IB, IIB through VIIB a	e knowr	nas L		
	A) V	Transition elements	B)	Rare earth metals		
	C)	Lanthanides	D)	Actinides		
				4		
18.	The f	ourteen elements following lantha	num are	known as.		
	A)	Lanthanones	B) v	Lanthanides		
	C)	Rare earths	D)	All		
			- 6			
19.	Whic	h of the following elements have the	ne larger	radius?		
	A)	F	B)	cı		
	C)	Br	D) V	I		
20.		Nitrogen is comparatively inert element because it has A) V Stable electronic configuration B) Low atomic radius				
	A) V		B)	Low atomic radius		
	C)	High electro negativity	D)	High dissociation energy		
21.	The	trend of change in melting points	and hol	ling points of elements in the period		
		left to right is graded	una boi	mig points of elements in the period		
	A)	Increase	B) v	First increase then decrease		
	C) a	Decrease	D)	First decrease then increase		
	0	All an	-,	That decrease their minesse		
22.	White	h of the following is the general ele	etronic	configuration of transition elements?		
4	A)	ns², np ⁶ , nd ¹⁰	B)	(n - 1) ^{d1-10} , ns ² , np ⁶		
1	C)	ns ² , np ⁶ , nd ¹⁰	D) V	(n- 1) ^{d1-10} , ns ²		
23.		th of the following ions has the sma				
	A)	CI	B)	S ₂ -		
	C)	K+	D) A	Ca ^{2*}		

4.	Large	amounts of atomic hydrogen are	present in	n the atmosphere
	A)	Earth	B) √	Sun
	C)	Moon	D)	None
5.	Chen	nical formula of heavy water is		
	A)	H ₂ O	B) √	D ₂ O
	C)	DO ₂	D)	None
6.	Hydr	ogen resembles with		colle.
	A)	Alkali metals	B)	Halogens
	C)	Group - IV elements	D) V	All
7.	Hydr	ogen was first prepared by Caven	dish in 176	66 by the action
	A) V	Zn + HCl	B)	Zn + NaOH
	C)	Zn+NaNo ₃	D)	All
8.	Hydr	ogen is a very good	- 4	
	A) V	Reducing agent	20	B) Oxidizing agent
	C)	Reducing agent as well as oxidizi	ng agent	D) None
9.	Hydr	ogen at the time of its generat	ion during	chemical reaction is in the form of
	atom	nic state and is called		
	A)	Ionic hydrogen	B) v	Nascent hydrogen
	C)	Atomic hydrogen	D)	None
0.	Perm	nanent hardness of water is due to	•	
	A)	Sulphates of Na and K	B) √	Sulphates of Mg and Ca
	C)	Bicarbonates of Mg and Ca	D)	None
1.	Hydr	ogen per oxide is used as		
i	A) V	An oxidant only	B)	An acidic only
6	C)	A reducant only	D)	All
2.	Whe	n steam is passed over red hot	coke at 1	1000 degree centigrade a mixture of
	carbo	on monoxide and hydrogen gas is	produced.	it is known as
	A)	Heavy water	B) √	Water gas
	C)	Phosgene gas	D)	None

3.	Hydr	ogen is commercially prepared by the	e therm	nal decomposition of					
	A) √	Methane	B)	Ethyne					
	C)	NaCl	D)	Cellulose					
4.	Hydr	ogen forms salt like hydrides with the	e elem	ents of					
	A) V	IA and IIA	B)	IIIA and IVA					
	C)	VA and VIA	D)	VIIA					
5.	Hydr	Hydrogen forms interstitial hydrides with the elements of							
	A)	s block	B)	p block					
	C) v	d block	D)	zero group					
6.	Ionic	hydrides are usually							
	A)	Liquids at room temperature		B) √ Good reducing agent					
	C)	Good electrical conductors in solid st	tate	D) Easily reduced					
7.	The I	hydrides which are good conductors o	of elect						
	A) V	Ionic hydride	B)	Covalent hydride					
	C)	Complex hydride	D)	Interstitial hydride					
8.	Cova	lent hydrides are prepared by the dir	ect act	ion of					
	A)	Metals with hydrogen	B) √	Non metals with hydrogen					
	C)	Transition elements with hydrogen	D)	None					
9.	The	hydrides formed by the combination	of no	n metals of groups IVA, VA, VIA and					
	VIIA	with hydrogen are called							
	A)	Ionic hydride	B) √	Covalent hydride					
	C)	Complex hydride	D)	Interstitial hydride					
0.	The	atoms of the same element which h	nave th	e same atomic number but different					
1	mass	numbers are called							
P.	A) V	Isotopes	B)	Actinides					
Y	(C)	Isobars	D)	None					
1.	Whic	ch type of hydrides show strong reduc	cing pro	operties?					
	A)	Covalent	B)	Ionic					
	C) V	Complex	D)	Interstitial					

	A)	p-orbital	B)	d-orbital		
	C)	f-orbital	D) v	s-orbital		
43.	Dens	ities, mp and bp of alkaline earth	metals are	e higher th	an alkali me	als due to
	A)	High ionization potential		B)	High nucl	ear charge_
	C) V	High ionization potential and nu	clear charg	e D)	None	
44.	Li she	ows diagonal relationship with				· Oli
	A)	Na	B)	В	Total Control	0
	C) V	Mg	D)	Ca	0	10
45.	The	oxidation number of each elemen	t of group	I-A is	-	
	A)	0	B) √	+1	31	
	C)	+2	D)	-1	0	
46.	The	oxides of the alkali metals are		110		
	A)	Covalent oxides	9_B)	Acidic oxi	de	
	C)	Amphoteric oxides	D) v	Basic oxid	le	
47.	Whe	n bleaching powder is treated	with stron	g solution	of ammoni	a, which gas
	A) V	Nitrogen	B)	Oxygen		
	C)	Hydrogen	D)	Carbon di	oxide	
48.	On a	dding KI to a solution of CuSO ₄ w	hich of the	following i	is obtained	
	A)	Cupric oxide	B) √	Metallic c		
	C)	Cuprous iodide with iodine	D)	No change		
49.	Sodi	um metal cannot be stored in				
	A)	Acetylene	B)	Kerosene		
1	C)	Alcohol	D) v	Water		
50.	Sodia	um is a powerful				
	A) V	Reducing agent	B)	Oxidizing	agent	
	C)	Bleaching	D)	All		
		For More Notes,	Mcqs, Onu	INE QUIZZES		
		ADAMIEECOAC	HING, BLOGSF	от.сом		

42. The outermost orbital of alkali metal is

51. The chemical formula of Magnesite is

44 MgCl C) V MgCO

D) None 52. The electrolytic cell used for the production of metallic sodium is known

B) Mg(HCO₂),

A) v Down's cell R) Solvay's cell C) Habeas cell D) None

53. Sodium metal is obtained from which of the following mineral Amblygonite Δ١ Lenidolite

C) Camalite D) v Halite

54. The formula of Chile salt netre is A) KNO. B) V NaNO D) Na₃CO₄ C) NaCl

55. When NaCl is dissolved in water, the sodium ions become

41 Ovidized Reduced Hydrolyzed D) √ Hydrated

56. The mineral MgCo₁, CaCo₁ is known as Gunsum R) Reryl

C) v Dolomite DI Calcite

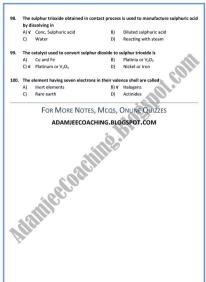
57. Epson salt is a hydrate of A) V Magnesium sulphate 60 Calcium sulphate

C) Ferrous ammonium sulphate D) Magnesium ammonium phosphate

NaHCO₃ is commonly called

Soda ach R) v Raking soda Washing soda D) None

59. Sodium carbonate is generally called


D٦ Backing soda C) Caustic roda DΙ None

60.	NaH	CO ₂ is prepared by						
	A)	Down's process	B) v	Solvay's proces	s			
	C)	Nelson's process	D)	None				
61.	Back	ing powder has which o	ne of the following t	formula?				
	A)	Na ₂ CO ₄	B)	Na ₂ SO ₄				
	C) V	NaHCO ₃	D)	K2CO ₃				
62.	The	chemical formula of gyp	sum is		OUT.			
	A)	CaSO ₄ .5H ₂ O	B)	CaSO ₄ .4H ₂ O				
	C) V	CaSO ₄ .2H ₂ O	D)	None	alo			
63.	The	commonly used name fo	r sodium hydroxide	is a	10.			
	A)	Soda ash	В)	Baking soda	K			
	C) V	Caustic soda	D)	None				
64.	Sodi	um hydroxide is heated	with silver nitrate t	he product will b	10			
	Ammonium hydroxide, silver hydroxide							
	B)	Ammonia water	202					
		Sodium chlorate, sodiu	m chloride and water	er				
	D)	No reaction						
65.	If ch	If chlorine is bubbled through cold solution of calcium hydroxide, the product will be						
001		A) ▼ Bleaching powder, sodium chloride and water						
	B)							
	C)							
	D)							
66.	Nels	on's cell is used for the r	nanufacture of					
	A)	NaCl	B) v	NaOH				
. 1	C) (Na ₂ CO ₃	D)	CaCO ₃				
67.	Casti	ner - Kellner process is u	sed for the producti	on of	on industrial scale			
7	A)	NaCl	B) v	NaOH				
	C)	Na ₂ CO ₃	D)	NaHCO ₃				
68.	The	chemical formula of blea	ching powder is					
	A)	CaCl ₂	B)	CaOCI				
	C) V	Ca(OCI)CI	D)	Ca(HCO ₃) ₂				

	A)	0,	B)	QCI				
	C) V	Cl ₂	D)	CI				
	C) V	Ci2	U	d				
70.	Whit	e vitriol has the formula						
	A)	CUSO ₄	B) √	ZnSO ₄ .7H ₂ O				
	C)	FeSO ₄ .7H ₂ O	D)	COSO ₄ .7H ₂ O				
71.	The o	elements which belong to group IIIA	to grou	p VIIIA are called				
	A)	s - block elements	B) √	p - block elements				
	C)	d - block elements	D)	f - block elements				
72.	Allel	lements of group IIIA show high cova	lency d	lue to				
	A)	Small size	B)	High charge				
	C)	Large value of ionization potential	D) V	All				
73.	The f	formula of borax is	- 6					
	A)	Na ₂ B ₄ O ₇	B)	Na ₂ B ₄ O ₇ .5H ₂ O				
	C)	Na ₂ B ₄ O ₇ .7H ₂ O	D) V	Na ₂ B ₄ O ₇ . 10H ₂ O				
74.	The f	formula of orthoboric acid is	100					
	A)	HBO ₂	B)	HBO ₃				
	C)	H ₂ BO ₃	D) V	H ₃ BO ₃				
75.	Whic	Which elements exhibit allotropy?						
	A)	U C	B)	Na				
	C) V	P and S	D)	В				
76.	Bauxite, Cryolite and Alunite are ores of							
	A)	Barium	B)	Calcium				
. 1	C)	Copper	D) V	Aluminum				
77.	Baye	r's process is used for the purificatio	n of					
Y	A)	Cryolite	B) √	Bauxite				
	C)	Alum stone	D)	Beryl				
78.	Whe	n aluminum is added to potassium h	vdroxic	de solution				
	A)	No action takes place	B)	Oxygen is evolved				
	C)	Water is produced	D) v					

79.	In Ale	a Hall Barania arasas fa		ninum the substance produced at th
79.		ode is	or producing aidin	mum the substance produced at th
	A) V		B)	AI203
	C)	F ₂	D)	c
80.	Na _s A	IF ₆ is called		
	A)	Bauxite	B) √	Cryolite
	C)	Alum stone	D)	Alunite
81.	Alun	ninum resists corrosion due	to the formation	of a coat of
	A)	AIN	B)	AI(NO ₃) ₃
	C) V	Al ₂ O ₃	D)	Al ₂ (CO ₃) ₃
				. 3
82.		nond is used		0.34
	A)	For cutting glass	B)	As precious stone
	C)	For rock drilling	D) v	All
83.	The	refractive index of diamone	d is	
	A)	1.4	B) v	2.45
	C)	3.4	D)	4.4
84.	The	chemical formula of blue vi	triol is	
	A)	BaSO ₄	B)	CaSO ₄
	C)	CuSO ₄	D) V	CuSO ₄ .5H ₂ O
85.	Lead	chromate is used as pigme	ent under the nan	ne of
	A) V	Chrome yellow	B)	Blue yellow
	C)	Litharge	D)	Chrome blue
86.	The	formula of red led is		
	A)	PbO	B)	Pb ₂ O ₃
1	C) V	Pb ₃ O ₄	D)	PbO ₂
87.	Pb30	D ₄ is commonly called		
200	A)	White led	B)	Litharge
	C) V	Sandhur	D)	None

88.	The	formula of chrome red is		
00.	A)	PhO PhO	B)	PbC ₂ O ₄
	C)	Pb ₂ O ₄	D) v	PbCrO_PbO
	-,	1 5254	.,.	1 8 8 9 9 1
89.	Sand	lhur a brilliant red coloured compour	d of le	ad is obtained by treating
	A)	Lead chemically	B)	Lead with air
	C) V	Lead monoxide with air	D)	Lead oxide with air
90.	Lead	monoxide is a vellow powder also ca	illed	o Olla
	A) V	Litharge	B)	Epson
	C)	Sandhur	D)	None
91.	The f	formula of oleum is		. 3
	A)	H ₂ SO ₄	B)	H ₂ SO ₃
	C) V	H ₂ S ₂ O ₇	D)	H ₂ S ₂ O ₃
			- 4	
92.	The	king of the chemicals is	-	
	A)	HCI	B) √	H ₂ SO ₄
	C)	HCIO ₄	D)	HNO ₃
93.	H ₂ SC	4 reacts with Mg metals and liberate		
	A)	02	B) √	H ₂
	C)	SO ₂	D)	SO ₃
		.00		
94.		th of the following is charred by conc		
	A)	Wood	B)	Paper
	C)	Sugar	D) V	All
95.	H ₂ S i	s a good		
	A).	Oxidizing agent	B) √	Reducing agent
-	(c)	Donating agent	D)	None
96.		ch acid is prepared by contact process		
96	A)	ch acid is prepared by contact proces:		
1	C)	HCI HE	B)	HNO ₃
	C)	HF	D) V	H ₂ SO ₄
97.	Whi	ch acid is used as dehydrating agent?		
	A)	HCI	B)	HNO ₃
	C) V	H ₂ SO ₄	D)	CH₃COOH

101. In which compound oxygen has a positive oxidation state? A) H₂O H₂O₂ CLY OF. DI

cio.

102. In the electrolytic process for obtaining chloring gas from bring the cell is call-A) Down's cell R) Voltaic cell

Cly/ Nolson's coll DV Top of cell

103. A mixture of one volume to cone. HNO, and three volumes of cone HCI is known as Oxidizing solution R) Leaning solution

C) V Aqua regia

104. The acid produced by Ostwald's Process is

A) HCI

C) V HNO.

105. Which member of group V-A forms multiple bonds? Δ١ B) v N

C) D) As

106. HNO₃ is a strong Reducing agent B) √ Oxidizing agent

C) Hydrating agent D) None

107. Lunar caustic is another name given to a compound of silver which is Alw. Nitrate R) Mitrito Chloride D١ Chlorite

108. When tin is heated with cone. HNO, it forms

A) Passive Stannous nitrate

C) Stannic nitrate D) V Meta stannic acid

109.	Cinna	abar is an ore of					
	A)	Lead	B)	Zinc			
	C)	Silver	D) v	Merc	cury		
110.	Trans	sition elements exhibit variable va	lencies	becau	se they release electrons from		
	the f	ollowing orbits					
	A)	ns orbit	B)	ns ar	nd np orbit		
	C) V	(n -1) d and ns orbit	D)	(n-1)	d orbit		
111.	The t	ransition elements are located between	ween		× 6.00		
	A)	s block elements	B) √	s and	p block elements		
	C)	p block elements	D)	fblo	ck elements		
112.	The	color of transition element complex	es is a re	sult o	186		
	A)	Colored anion	B)	Colo	red solvent		
	C) V	Electronic transitions	D)	None	200		
113.	The	metals and compounds of d bloc	k eleme	nts w	ith unpaired electrons show a		
	specific property called						
	A)	Allotropy	B)	Isom	erism		
	C)	Diamagnetism	D) V	Para	magnetism		
114.	Man	ganese belongs to group VIIB of the	periodi	c table	e. The maximum oxidation state		
	shown by manganese will be						
	A) V		B)	8			
	C)	-7	D)	+6			
115.	Whic	h of the following is the important	Sulphide	ore o	f Copper?		
	A) .	Malachite	B)	Azur			
	c) V	Chalcopyrite	D)	Cupr	ites		
116.	to th	e Bessemerization stage of copper	metallu	·m/ cc	unner metal is obtained which is		
1	pure	e bessementation stage of copper	metanu	BY, CC	pper metar is obtained which is		
1	A)	100%		B) v	99%		
	C)	98%		D)	97%		
117.	Bliste	er copper is					
	A)	Pure copper		B)	Special copper		
	C) V	With 1 % impurity		D)	Alloy		

118.	Whe	n copper is heated in air, both are formed		
	A)	Cu + CuO	B)	Cu+CO
	C)	Cu + O₂	D) √	CuO+Cu ₂ O
119.	An al	lloy of copper which contains 80% Cu and 2	0% Sn	is called
	A)	Bronze	B)	Brass
	C) V	Bell metal	D)	All
120.	For n	naking of glass mirrors, one of- the main so	lutions	used is that of
	A)	Iron	B)	Chromium >
	C) V	Silver	D)	Mercury
121.	Luna	r caustic is		. 4
	A)	AgCI	B) √	AgNO ₃
	C)	KNO ₃	D)	NaOH
122.	Gold	dissolves in Aqua regia forming		
	A)	Aurum chloride	BIV	Auric chloride
	C)	Chloro auric acid	D)	Golden tetra
123	The I	plack image on an exposed and developed p	hotor	raphic film is composed of
	A)	Ag	B)	Ag ₂ O
	C) V	AgBr	D)	[Ag(S ₂ O ₃) ₃] ²
		400		
124.	Нурс	is the technical name of		
	A) V	Na ₂ S ₂ O ₃	B)	AgNO ₃
	C)	Cu ₂ S	D)	CuCO ₃ Cu(OH) ₂
125.	Whe	n potassium dichromate is heated with co	ncentr	ated sulphuric acid, olive gree
	color	ared salt is produced which is a double salt	known	as
- 2	A)	Chrome	B) v	Chrome alum
10	C)	Chrome green	D)	Green potash
K				
126.		ssium permanganate when dissolved in wat		
	A)	Clear	B)	Yellow
	C)	Green	D) √	Pink

27.	Pota	ssium permanganate acts as		
	A)	An acid	B)	A base
	C) V	An oxidizing agent	D)	A reducing agent
28.	One	of the products of a reaction betv	veen solid KMnC	4 and cone. HCI
	A)	A red liquid	B) v	A greenish yellow gas
	C)	MnO ₂	D)	HCIO ₄
29.	Ligan	ds are		c O II.
	A) V	Electron pair donors	B)	Electron pair acceptors
	C)	Neutral	D)	None
30.	The :	slow and continuous eating awa	y of any metal b	by the action of environment is
	calle	d		034
	A)	Oxidation	B)	Reduction
	C) V	Corrosion	D)	Erosion
31.	Meta	ellic coating is also a method to p	revent iron fron	rusting which of the following
	is no	t considered as a metallic coating		
	A)	Spraying	B)	Electroplating
	C) V	Heating	D)	Galvanizing
32.	Alum	inum resists the process of corro	sion due to the f	ormation of
	A) V	Aluminum oxide	B)	Aluminum carbonate
	C)	Aluminum sulphate	D)	Aluminum nitride
33.	Galva	anizing is done by dipping clean in	on sheet in a zin	c chloride bath and
	A) V	Heating	B)	Cooling
	c) .	Forth floating	D)	Alloying
34.	Stain	less steel is a		
M.	ANV	A mixture	B)	A compound
1	C)	Art element	D)	All
35.	An a	lloy of iron which contains chromi	ium 18%, nickel i	8%, 0.18% carbon
	A)	Brass	B) √	Stainless steel
	C)	Bronze	D)	German Silver

	A)	12%	B) √	18%
	C)	10%	D)	5%
			-	
137.	The	branch of chemistry which deals	s with the study o	f compounds containing
	as ar	essential element is called		
	A)	Physical	B)	Inorganic
	C)	Nuclear	D) v	Organic
138.	Whie	ch form of coal contains 92 - 989	% carbon?	× 63
	A)	Peat	B)	Bituminous
	C)	Sub bituminous	D) v	Anthracite
139.	Afte	r heating at high temperature, o	oal is converted in	to
	A)	Coke	B) (Coal gas
	C)	Coal tar	D) V	All
140.	Kero	sene oil is mixture of hydrocarb	ons having carbon	atoms
	A) V	12 - 16	B)	13-14
	C)	14 - 15	D)	8 – 9
141.	Cycle	opentane is an example of		
	A)	Aromatic compound	B)	Aliphatic compound
	C) V	Cyclic compound	D)	None
142.	The	compound in which two alkyl gr	oups are attached	to oxygen atom is called
	A)	Aldehyde	B)	Ketone
	C) V	Ether	D)	Alcohol
	-			
143.		nic compounds contains		
. (A)	Nitrogen	B) √	Carbon
1	C)	Oxygen	D)	Hydrogen
144.	In or	ganic compounds carbon atoms	form	
	A)	Ionic bond	B)	Metallic bond
	C) √	Covalent bond	D)	None

136. Stainless steel contains Cr up to

	A)	Cube	B)	Hexagon
	C)	Prism	D) V	Tetrahedron
17.	Form	nula of formic acid is		c Olle
	A) V	H-COOH	B)	CH ₃ - COOH
	C)	CH ₃ - CH ₂ - COOH	D)	CH ₃ - CH ₂ CH ₂ - COOH
18.	Wha	t is the formula of Valeric acid is		all b
	A)	H-COOH	B) √	CH ₃ (CH ₂) ₅ - COOH
	C)	CH ₃ - CR ₂ – COOH	D)	CH ₃ - CH ₂ CH ₂ COOH
19.	Com	mon name of Formic acid is		
	A) V	Methanoic acid	BI	Ethanoic acid None
	C)	Propanic acid	D)	None
ю.		ries of related chemical compounds that h two successive members differ in mole		
	calle	d		
	A)	Isomers	B)	Metamers
	C)	Isotopes	D) √	Homologous

FOR MORE NOTES, MCQS, ONLINE QUIZZES

ADAMJEECOACHING, BLOGSPOT, COM

146. In CCL molecule four valencies of carbon atom are directed towards the corners of a

80%

D) 40%

145. In natural gas the percentage of methane is

A) 90%

C) √ 95%

-	GIILLI III III	TILL GITTI	LLITTO
			AdamieeCoaching.
151.	The general formula of alkane is		

A) CHa+Hana

C.H. C) C.H. DIV CH.

152. The general formula of alkenes is

A) C.H. C) V CoHoo

153. Which has the longest bond length?

A) C=C CIV C-C

Cyclic

Aromatic

154. The class of straight chain hydrocarbons is called

A) V Acvelic C) Primary

155. Compounds having same molecular formula but different structures are said to be Monomore Isomere

Δ١

Metamers Tautomers D)

C)

156. Compounds having same molecular formula but different functional groups show

Metamorphism Position isomerism

 Chain isomerism D) √ Functional group isomerism

157. The phenomenon in which two or more compounds have the same molecular formula but different carbon chain is known as 4) Metamorphism

Functional group isomerism Position isomerism D) v Chain isomerism

158. The phenomenon in which the compounds have the same functional group but different alkyl groups attached to the same multivalent atom is known as

A) V Metamorphism Functional group isomerism

C) Position isomerism None

159.	An is	omer of ethanol is		
	A) V	Di methyl ether	B)	Diethyl ether
	C)	Ethylene glycol	D)	Methanol
160.	On s	trong heating the fractions containing the	ne larg	er hydrocarbon molecules are
	brok	en up into smaller and more volatile molec	ales, th	is is called
	A)	Sublimation	B) √	Cracking
	C)	Roasting	D)	Refining
161.	Cracl	king is also termed as		" 62
	A) V	Pyrolysis	B)	Refining
	C)	Polymerization	D)	Hydrohalogenation
				. 6 6
162.		ethyl lead is used as		034
	A)	Knocking agent	B)	Catalyting agent
	C) V	Anti Knocking agent	D)	Reforming agent
163.	The o	quality of petroleum is determined by	Ø.,	
	A)	Decane number	B) √	Octane number
	C)	Hexane number	D)	None
164.	Diese	el oil is a mixture of hydrocarbons containin	g carb	on atoms
204.	A)	13-30	B)	13-20
	C) V	13-25	D)	13-18
		6.00		
165.		line is a mixture of hydrocarbons containin		
	A) √	5-10	B)	5 – 8
	C)	5-13	D)	5-11
166.	Its. n	najor constituents are hydrogen (50%), n	ethan	e (35%) and carbon monoxide
- 1	(8%)			
ω,	A)	Coke	B) v	Coal gas
1	C)	Coal tar	D)	None
167.	The	distillation of coal at high temperature and	in abse	ence of air is called
	A)	Vacuum distillation	B)	Normal distillation

D) **V** Destructive distillation

C) Fractional distillation

	C) v	Alkyl	D)	Alkane
169.	Para	ffin's are the type of hydrocar	bons which are	
	A)	Benzonoid	B)	Non Benzonoid
	C)	Closed chain	D) v	Open chain
170.	The :	smallest known cyclic hydroca	rbon is	colle
	A) V	Cyclopropane	B)	Cyclobutane
	C)	Cyclopentane	D)	Cycioheptane
171.	Alde	hydes and carboxylic acids ca	n be obtained by the	catalytic oxidation of
	A) V	Alcohols	B)	Methane
	C)	Ethane	D)	Benzene
172.	If an	alkyl halide is allowed to rea	ct with nascent hyd	rogen, it produces which of the
	follo	wing compound?	2	
	A) V	Alkane	B)	Alkyne
	C)	Alkene	D)	Di Alkyl halide
173.				ne by adding hydrogen in the
		ence of a catalyst. This reaction		
	A)	Hydration	B) v	Hydrogenation
	C)	Dehydration	D)	Dehydrogenation
174.				the presence of calcium oxide,
		a gas that can be burnt; which		
	A) .	Ethane	B) v	Methane
4	c)	Propane	D)	Rutanp
175.			ss, odorless, insolub	le in water and found in natural
N		is well, which one is that		
	A)	Ethane	B) √	Methane
	C)	Pentane	D)	Butane

168. Removal of one hydrogen atom from alkane produces a group called

B) Alkyne

A) Alkene

176.							
	react	tion is called					
	A)	Addition	B)	Substitution			
	C)	Displacement	D) √	Photochemical			
177.	Poly	ethylene is produced from ethylene at hig	h temp	erature and pressure. This is an			
	exan	nple of					
	A)	Addition	B)	Substitution			
	C) V	Polymerization	D)	Hydrogenation			
178.	Ethe	ne gas when passed through slightly alka	line pot	assium permanganate solution,			
	the o	olor of the solution is discharged due to					
	A)	Oxidation	B) √	Hydroxylation			
	C)	Hydration	D)	Hydrogenation			
179.	Whe	n ethylene is allowed to react with sulp	hur me	onochloride, it produces a very			
	poise	onous gas known as	197				
	A)	Thyonyl gas 2	B)	Chloride gas			
	C) V	Mustard gas	D)	Cyanide gas			
180.	Nam	e the hydrocarbon gas that is applied as ge	eneral a	nesthesia			
	A)	Ethyne	B)	Ethane			
	C)	Natural gas	D) V	Ethylene			
181.	Ethy	lene gas when allowed to react with hydr	ogen g	as in the presence of nickel like			
	catal	yst at high temperature, it produces ethan	e. This	reaction is called			
	A)	Dehydration	B)	Hydration			
	C) V	Hydrogenation	D)	Hydrolysis			
182.	In th	e presence of dilute sulphuric acid and n	nercury	sulphate as catalysts, ethylene			
. i	prod						
W,	AL	Carboxylic acid	B) √	Alcohol			
B	(C)	Aldehyde	D)	Ketone			
183.		ropping water on calcium carbide, a gas					
		burns with luminous flame, which of the f					
	A)	Propane	B) √	Acetylene			
	C)	Ethane	D)	Methane			

184.		ie of the tests to identify prese . Which color of the resultant co		Ammonical Cuprous Chloride is the presence of acetylene?
	A)	White	В)	Yellow
	C) V	Red	D)	Green
185.	A pro	operty of acetylene is to polym	erize. If three mol	ecules of acetylene are allowed
	to po	olymerize in the presence of cop	oper at elevated t	emperature, indicate which one
		oe the product		
	A)	Hexyne	B) √	Benzene
	C)	Hexane	D)	Cyclohexane
186.	Viny	I chloride is produced by the rea	ction of HCI with	
	A)	Ethane	B)	Ethane
	C) V	Acetylene	D)	Aldehyde
187.	Carb	oxylic acids combine with acety	lene in the presen	ce of Hgo2 forming
	A)	Esters	8)	Alcohols
	C) V	Vinyl Esters	D)	Vinyl chloride
188.	Benz	ene is an aromatic compound o	btained from	
	A)	Petrol	B)	Coal
	C) V	Coal tar	D)	Pitch
189.	The s	stability of benzene molecule is	attributed to	
	A) V	Resonance energy	B)	Bonding energy
	C)	Stabilization energy	D)	Aromatic character
190.	In th	e presence of nickel t elevated t	emperature, benz	ene can be reduced to
	A) .	Acetylene	B)	Hexane
4	c) 🗸	Cyclohexane	D)	Ethane
191.	The	hydrogen of benzene can be	substituted by	different ions under different
13		litions. If the ion replacing hydro		
- >	A)	Addition	B)	Nucleophilic substitution
	C)	substitution	D) V	Electrophilic substitution

exam A) C) The n A)	thylene is produced from ethylene at higher of pale of Addition. Substitution proper discovering the physical pale of the physical pale of the physical pale of the pale of the physical pale of the physical pale of the ph	B) v	Polymerization Hydrogenation
The n	ple of Addition Substitution nost stable hybridization resulted from the sp sp ² s Halo derivatives of alkanes are called	B) v D)	Polymerization Hydrogenation nation of 's' and 'p' orbitals is sp ² None
exam A) C) The n A)	ple of Addition Substitution nost stable hybridization resulted from the SP sp'	B) v D) combi	Polymerization Hydrogenation nation of 's' and 'p' orbitals is sp ²
exam A) C) The n	ple of Addition Substitution nost stable hybridization resulted from the sp	B) v D) combi	Polymerization Hydrogenation nation of 's' and 'p' orbitals is sp ²
exam A) C) The n	ple of Addition Substitution nost stable hybridization resulted from the sp	B) v D) combi	Polymerization Hydrogenation nation of 's' and 'p' orbitals is sp ²
exam A) C) The n	ple of Addition Substitution nost stable hybridization resulted from the	B) v D)	Polymerization Hydrogenation nation of 's' and 'p' orbitals is
exam A) C)	ple of Addition Substitution	B) v	Polymerization Hydrogenation
exam A)	ple of Addition	B) v	Polymerization
exam	ple of		
		h temp	erature and pressure. This is a
Polve	thylene is produced from ethylene at high	h temp	erature and pressure. This is a
			TO STATE OF THE ST
C)	Alkenes	D)	None
			Alkynes
(2)	Cyclohexene	D) V	Benzene
A)	Hexyne	BI	Cyclohexane
Wher	sodium benzoate is treated with caustic	oda, it	is converted into
-)	Tellow acid	Div	2, 4, 6° III Nitro Pilenoi
C)		-,	
		D)	Trinitrotoluene
Yb	Abor some of plants and to		
C)	Toluene	D)	Xylene
A)	Benzene	B) √	Aniline
c)	Para	D)	Not at all
4)	Ortho	B) v	Meta
0 P 0 P 0	he o	Tollowing aromatic compounds which one is to Benzene Tollower and to Tollower be other name of picric acid is Tri- nitro Aniline Yellow acid When sodium benzoate is treated with caustic and the compound of the compound of the caustic and) Ortho) Para) Para) Para) Benzere By Tolkere D) he other name of picric acid is) Yellow acid) Yellow acid) Henyne D) Henyne D) Henyne D) Heyne D) Heyne D) Wellow acid D) Wel

ADAMIEECOACHING.BLOGSPOT.COM

192. For the nitration of certain organic compounds concentrated H₂SO₄ is used as

B)

Dehydrating agent

D) As a solvent only

A) Sulphonating agent

C) √ As a catalyst

201	The general formula of alkyl halides is	

Al V R-X R-NH₂ C) RICHO D١ None

202. Alkyl halides on treatment with KOH give A١ Phenol Alkena

Aldehyde

203. The Markowinkoff Rule is used for Stability of free radicals Δ١ Stereochemistry R) c) Activity of enzyme D) v Addition of acid to double bonds

DI Votone

Odd election

204. The free radicals are species of organic ions that have

A) Positive charge

C) Negative charge D) No charge

205. Alkyl halides can be prepared by treating halogen acids with Ethana Ethanol Δ١

Cly Ethene and Ethanol D) Aldehyde

206. The reaction of alcohol with SOCI2 in the presence of pyridine as catalyst gives

A) Acids # Acid chloride C) V Alkyl halide D) Benzene

207. Alkyl halides on treatment with Grignard's reagent give

A) Alkenes Allomor C) V Akanes D١ Aride

208. Alkyl magnesium halides are known as

A) Simon Smith reagent Tollen's reagent

C) √ Grignard's reagent D) Bardord's reagent

209.	Hydr	olysis of Grignard's reagent yields		
	A)	Alcohol	B)	Aldehyde
	C)	Ester	D) V	Alkane
210.	Grigi	nard's reagent on treatment with dry Co ₂ an	d HCI	yields
	A)	Ester	B)	Alcohol
	C) V	Carboxilic acid	D)	Aldehyde
211.	If Ke	tone reacts with Grignard's reagent, it also p	oroduo	es alcohol, but it will be a
	A)	Primary alcohol	B)	Secondary alcohol
	C) V	Tertiary alcohol	D)	Aromatic alcohol
212.	If a	substitution reaction is a two step proce	ess, ar	nd, in the slow step only one
	mole	cule reacts, this type of reaction is called		934
	A) V	SN ₁	B) (SN ₂
	C)	Trimolecular	D)	Bimolecular
213.	In th	e SN ₂ type of substitution reaction, an inter	media	te is formed which is called
	A)	Carbide	B) √	Carbonium ion
	C)	Activated complex	D)	Intermediate
214.	Whe	n metallic sodium in ether is heated with	h an a	alkyl halide, a higher alkane is
	form	ed. It is called		
	A)	Sulphonation	B) √	Wurtz's Reaction
	C)	Friedel Crafts Reaction	D)	None
215.	Rect	ified spirit contains		
	A) V	95.6% alcohol	B)	70.5% alcohol
	C)	100% alcohol	D)	85.4% alcohol
216	Alco	holic fermentation is brought out by the act	ions of	fi
4	AIV	Yeast	B)	CO,
1	C)	02	D)	со
217.	Whic	ch of the following is known as wood spirit?		
	A)	Ethyl alcohol	B)	Propyl alcohol
	C) V	Methyl alcohol	D)	Butyl alcohol

218.	Oxid	ation of methyl alcohol gives		
	A) V	Formaldehyde	B)	Acetone
	C)	Easter	D)	Acid
219.	Alcol	hol reacts with carboxylic acids, acid halide	s and	anhydrides to produce the clas
	of co	mpounds known as		
	A)	Grignard's reagent	B)	Amides
	C) V	Easter	D)	None
220.	Oxid	ation of 2 - propanol gives		. 630
	A) V	Propanone	B)	Butanone
	C)	Pentanone	D)	None
				. 4
221.	The o	example of a Trihydric alcohol is		934
	A)	Glycol	B) 🗸	Glycerol
	C)	Tertiary butyl alcohol	D)	Glucose
222.	Ahso	slute alcohol contains	0.	
	A)	40% water	B)	10% water
	C)	20% water	D) V	No water
223.	The f	formula of secondary alcohol is		
	A)	R-OH	B)	R-CH₂OH
	C) V	R ₂ CHOH	D)	None
		6.00		
224.		ose in the presence of Zymase is converted		
	A)	Alcohol	B)	Acid ^m
	C) V	Ethyl alcohol	D)	Ketone
225.	Dehy	dration of ethyl alcohol yields		
- 2	A)	Aldehyde	B)	Ketone
6	C)	Acid	D) V	Alkene
15				
226.		ncentrated sulphuric acid is added to an alc		nd heated, it produces alkenes
		e the product that will be formed from etha		
	A)	Ether	B) √	Ethylene
	C)	Ethane	D)	Easter

227.	Whe	n phenol is treated with sulphuri	ic acid, it yields	
	A)	Ortho sulphuric acid	B)	Para sulphuric acid
	C) v	Both Ortho and Para acid	D)	None
228.	Whe	n phenol is reduced in the prese	nce of Zn dust, we	get
	A)	Cyclohexene	B)	Cyclohexane
	C) v	Benzene	D)	Toulene
229.	Nitra	tion of phenol gives		00
	A)	O - nitrophenol	B)	P - nitrophenol
	C)	M – nitrophenol	D) v	Both O and P
230.	Dow	n's process is used for the prepar	ration of	
	A)	Esters	B)	Ethers
	C)	Alcohols	D) V	Phenols
231.	Phen	ol is used in the preparation of		
	A)	Aspirin	BI	Phenacetin
	C)	Salol	D) v	All
232.	Bake	lite plastic was prepared by heat	ing phenol with	
	A)	Preservators	B)	Heat dissipaters
	C) v	Solvents	D)	Distillation media
233.	Acet	one may be converted to lodofor	m by heating wit	h
	A)	Br ₂	B) v	l ₂
	C)	F ₂	D)	Cl ₂
234.	Aldo	condensation reaction is given l	by molecules cont	taining

A) Carboxyl group B) V Alpha hydrogen C) Similar alkyl group D) Dissimilar alkyl group

235. The carboxyl compounds that do not have alpha hydrogen undergo

A) Aldol condensation Kolbe's reaction C) Addition reaction D) V Cannizaro reaction

		rmula of Fehling's solution is					
	A) V	Cu(OH) ₂	B)	NaOH			
	C)	КОН	D)	NH ₄ OH			
237.	Which of the following is a chief constituent of vinegar?						
	A)	Alcohol	B)	Glucosc			
	C)	Sucrose	D) V	Acetic acid			
238.	Acetic acid reacts with Thionyl Chloride to give						
	A)	Acetic anhydride	B) √	Acetyl chloride			
	C)	Ethyl acetate	D)	None			
239.	Acet	c acid is categorized					
	A)	Less volatile	B)	Less density			
	C) V	Less dissociation	D)	Less viscous			
240.	To which class of organic						
	A)	Esters	B)	Amines			
	C) V	Salts of organic acids	D)	Aldehydes			
241.	Reac	tion between NaOH					
	A)	Esterification	8) ∨	Saponification			
	C)	Fermentation	D)	Hydrogenation			
242.	When	acetic acid and ethanol react toget	her, an ester is	formed which is called			
	A)	Ethyl ester	B)	Ethanoic acid			
	C)	Fermentation	D) v	Ethyl acetate			
243.	A material cannot be termed as food unless it contains at least one						
2.401	A)	Vitamin	B)	Mineral			
		Nutrient	D)	Amino acid			
4	.0		-/				
244.	Milk,	fat, butler, cream and fish liver oil	contain vitami	n			
10	A) V	Vitamin A	B)	Vitamin B			
	C)	Vitamin C	D)	Vitamin E			
1		Which food component regulates body processes?					
245.	Whic	h food component regulates body	processes?				
245.	Whice A)	th food component regulates body Fats	processes? B) √	Vitamins			

tion					
20					
Irates					
The most important energy storage are compounds in the animal kingdom					
tids					
Hormones are made of					
Irates					

246. The use of the products of digestion in synthesis of cellular structure is known as

B) V Assimilation

D) None

A) Metabolism

ci Homeostasis

FOR MORE NOTES, MCQS, ONLINE QUIZZES ADAMJEECOACHING.BLOGSPOT.COM

-	GIIDI-IIO I III	TIBE GITTI TETO
		ADAMIEECOACHING.BLOGSPOT.COM
251.	Hemoglobin is a	

Al V Proteins R) Carbohydrates D) C) Fats Mineral

252. The branch of chemistry that deals with chemical processes going on in the living matter id nollnH

A) Physical Chemistry Analytical Chemistr C) Organic Chemistry D) √ Bio Chemistry

Carbohydrates

Vitamins

253. Polyhydroxyl aldehydes or ketones are also called

Proteins Δ١

C) Fats

254. On heating glucose with Fehling's solution, we get a precipitate of color 41

Yellow ■ B) V Red C Black D)

Green

255. Which of the following gives a deep blue color with a drop of dilute solution of indine?

A) Cellulose B) Glucose Cly Starch D١ Sugar

256. Carbohydrates which have three to nine carbon atoms and are not hydrolysable are

called A) v Monosaccharide Disaccharide C) Polysaccharide D١ None

257. Cellulose is an example of Monosaccharide

Disaccharide C) v Polysarcharide D) None

258. The most abundant and the most important steroid is the human body is A) Riboflavin B) √ Cholesterol

Cl Folic acid D) Inositol

259.	During digestion fats are broken down to							
	A)	Glucose	B)	Amino acids				
	C) V	Fatty acids	D)	None				
260.	Fats are usually decomposed in tissues providing							
	A)	Heat	B) √	Heat and energy				
	C)	Energy	C)	Strength				
261.	Duri	During digestion proteins are broken down to						
	A)	Glucose	B) √	Amino acids				
	C)	Fatty acids	D)	None				
262.	Lipid	s and proteins are made of						
	A) V	Macromolecule	B)	Micro molecule				
	C)	Micro atom	D)	None				
263.	Whit	Which organic compound is a major structural compound of an animal tissue?						
	A)	Carbohydrates	B) V	Proteins				
	C)	Cellulose	D)	Lipids				
264.	Enzy	mes are						
	A)	Carbohydrate in nature	B) v	Protein in nature				
	C)	Fat in nature	D)	None				
265.	Whi	th of the following is a pure amino acid						
203.	A) V		B)	Protein				
	C)	Hydroxyproline	D)	Enzyme				
266.	The substance upon which an enzyme acts is known as its							
	A) .	Domain	B)	Field				
	c) v		D)	Reactant				
267.	Wate	er soluble vitamins include						
10	A)	Vitamin A, B	B)	Vitamin D, K				
7	C) V	Vitamin B, C	D)	Vitamin C , E				
268.	Vitamin Bi is called							
	A) V	Thiamin	B)	Riboflavin				
	C)	Niacin	D)	Pyridoxine				

269.	Vitar	nin B is called					
	A)	Thiamin	B) √	Riboflavin			
	C)	Niacin	D)	Pyridoxine			
270.	Vitar	nin B5 is called					
	A)	Thiamin	B)	Riboflavin			
	C) V	Niacin	D)	Pyridoxine			
271.	The substances which are added to the soil to provide one or more nutrient elements						
	esser	essential for plant growth are called					
	A)	Minerals	B)	Hormones			
	C) V	Fertilizers	D)	None.			
272.	The	percentage of nitrogen in ammonium nitra	te is	381			
	A) V	32-33%	B) (34-36%			
	C)	40-45%	D)	None			
273.	The	elements like nitrogen, phosphorous, calci	ium are	added in large amounts to the			
	soils and are called						
	A) V	Nutrients elements	B)	Basic elements			
	C)	Trace elements	D)	Additives			
274.	Amm	nonium nitrate fertilizer is not used for whi	ch crop	?			
	A)	Cotton	B)	Wheat			
	C) V	Paddy rice	D)	Sugar cane			
275	Thou	widely used nitrogen fertilizer that contain	e about	46% nitrogen is			
273.	A)	Ammonia	B)	Ammonium nitrate			
	c) a	Ammonium sulphate	D) V				
	. 67	Authonum supriate	D) V	orea			
276.	The	themical name of urea is					
10	A)	Chloromethane	B)	Aneurim			
B	(C) V	Carbamide	C)	None			
277.	Ferti	lizers are classified into					
	A) √	Two categories	B)	Three major categories			
	C)	Four major categories	D)	None			

278. Ca₁(Po₄), is called A) √ Phosphorite Wavelite C) Apatite D١ None 279. Soap is an anionic surfactant in which the polar group is a A) Aldehyde Alcohol C) V Carboxylic group D) Amino group 280. Detergent are a major cause of water pollution because they A) Kill aquatic life Enhance bacterial activity Introduce additional nutrients in water D) V Contains components which are non biodegradable 281. Washing soap can be prepared by saponification with alkali of which of the following Oil? A) Rose oil Paraffin oil C) V Groundnut oil Kerosene oil 282. Commercial detergents contain mainly 41 RCOOM RoMa C) RoSNa D) V ROSO, Na 283. The principal former of all glasses is A) v Silica R) Sulphur C) Potash D) CaO 284. If glass is cooled suddenly then it becomes Malloshlo ۸١ Soft C) Transparent D) V Brittle 285. Colour is imparted to glass by mixing Synthetic dve Metal oxide Oxide of non metal D) V Colored salts 286. Water glass is A) of Another name of sodium silicate B) A special form of glass, to store water only C) Hydrated form of glass DI Hydrated silica

287.	287. The principle former of almost all glasses is				
	A) V	(SiO ₂) _p	B)	(SiO ₃) _n	
	C)	(SiO ₂) _X	D)	None	
288.	Cotto	on is an example of			
	A)	Animal fiber	B)	Mineral fiber	
	C) V	Vegetable fiber	D)	Synthetic fiber	
289.	Silk i	s an example of		c O br	
	A) V	Animal fiber	B)	Mineral fiber	
	C)	Vegetable fiber	D)	Synthetic fiber	
290.	The f	iber which is obtained from naturally occur	ring pr	oteins is called	
	A)	Saran	B) V	Azlon	
	C)	Rayon	D)	Nylon	
291.		ene fiber s made by reaction of terephtalic			
	A)	Ethylene	BIV	Ethylene glycol	
	C)	Glycol	D)	Terylene	
292.	A po	lymer obtained by mixing of hexamethelene	diami	ne and adipic acid is called	
	A)	Rayon	B)	Poly ester	
	C)	Polyamide	D) V	Nylon 66	
293.	Asbe	stos is a			
	A) V	Mineral fiber	B)	Animal fiber	
	C)	Vegetable fiber	D)	None	
294.	Whig	th, of the following thermoplastic materials			
	A)V	PVC	B)	Polysternes	
. 1	C) (Polyethylene	D)	Synthetic fiber	
295. The substances that reduce the brittleness and improve elasticity of plastics are called					
	A)	Stabilizers	B) V	Plasticizers	
	C)	Retarders	D)	Pigments	
			-		
296.		h of the following is a thermosetting plastic			
	A)	PVC	B)	Polyethylene	
	C)	Polystyrene	D) √	Silicones	

97.	The formation of PVC from Vinyl chloride is an example of					
	A)	Substitution reaction	B) √	Addition polymerization		
	C)	Condensation polymerization	D)	Condensation reaction		
98.	The material that increase the mechanical strength of plastics are known as					
	A) V	Filter	B)	Retarders		
	C)	Pigments	D)	Stabilizers		
99.	The substance added in the paints for improving the mechanical properties is					
	A) V	Filter	B)	Retarders >		
	C)	Pigments	D)	Stabilizers		
00.	A pa	int consist of		. d. 100		
	A)	Binder	B)	Orier		
	C)	Filter	D) V	All		

301. A liquid material that is applied on a surface to form a hard continuous protective film is called Acrylic

A) V Paint C) Diactic

Conditioners

FOR MORE NOTES, MCQS, ONLINE QUIZZES ADAMJEECOACHING.BLOGSPOT.COM